Skip to main content

Advertisement

Log in

On the key role played by altered protein conformation in Parkinson’s disease

  • Parkinson's Disease and Allied Conditions - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

On the basis of the previously proposed hierarchic organisation of the central nervous system (CNS) and of its syntropic behaviour, a view of neurodegenerative diseases focusing on the assemblage of abnormal multimeric proteins (pathologic protein mosaics (PMs)) is proposed. Thus, the main focus of the present paper is on Parkinson’s disease (PD) as a neurodegenerative disease, which has as crucial feature protein conformational alterations and formation of pathological PMs. Two interconnected cellular dysfunctions are discussed as main pathogenic factors of PD syndromes, namely mitochondrial deficits (i.e. energy failure, especially critical for Substantia Nigra DA neurons) and conformational protein alterations (due to genetic or environmental causes). Conformational protein alterations can trigger pathological phenomena via the loss and/or the gain of new functions. In particular, altered proteins can lead to the formation of abnormal PMs, which can, inter alia, cause distortion of cellular structures, toxic functions and/or formation of improper membrane ion channels. In view of the fact that disordered proteins can easily acquire unwanted conformation, the “disorder index” (DI) for proteins involved in PD has been evaluated. It has been found that both α-synuclein and tau-protein have high DI. This datum is in agreement with the observation that these two proteins synergistically promote polymerisation of each other into amyloid fibrils, favouring the formation of Lewy bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7(3):207–219

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K (1984) New concepts on the structure of the neuronal networks: the miniaturization and hierarchical organization of the central nervous system. (Hypothesis). Biosci Rep 4(2):93–98

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Zoli M, Merlo Pich E et al (1990) Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation. Neurochem Int 16:479–500

    Article  CAS  Google Scholar 

  • Agnati LF, Cortelli P, Pettersson R et al (1995) The concept of trophic units in the central nervous system. Prog Neurobiol 46(6):561–574

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Santarossa L, Benfenati F et al (2002) Molecular basis of learning and memory: modelling based on receptor mosaics. In: Apolloni B, Kurfes F (eds) From synapses to rules. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Agnati LF, Franzen O, Ferré S et al (2003) Possibile role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. J Neural Transm 65:195–222

    Google Scholar 

  • Agnati LF, Santarossa L, Genedani S et al (2004) On the nested hierarchical organization of CNS: basic characteristics of neuronal molecular networks. In: Erdi P, Esposito A, Marinaro M, Scarpetta S (eds) Computational neuroscience: cortical dynamycs, lecture notes in computer sciences. Springer Berlin Heidelberg, New York

    Google Scholar 

  • Agnati LF, Guidolin D, Genedani S et al (2005) How proteins come together in the plasma membrane and function in macromolecular assemblies: focus on receptor mosaics. J Mol Neurosci 26(2–3):133–154

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Genedani S, Carone C et al (2006a) The concept of Protein Mosaics: physiological role and relevance for Prion disease. Curr Proteomics 3:171–179

    Article  CAS  Google Scholar 

  • Agnati LF, Ferre S, Genedani S et al (2006b) Allosteric modulation of dopamine D2 receptors by homocysteine. J Proteome Res 5(11):3077–3083

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Guidolin D, Leo G et al (2007a) Role of cooperativity in protein folding and protein mosaic assemblage relevance for protein conformational diseases. Curr Protein Pept Sci 8(5):460–470

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Guidolin D, Carone C et al (2007b) Understanding neuronal molecular networks builds on neuronal cellular network architecture. Brain Res Rev. doi:10.1016/j.brainresrev.2007.11.002

    Google Scholar 

  • Agnati LF, Leo G, Genedani S et al (2007c) Structural plasticity in G-protein coupled receptors as demonstrated by the allosteric actions of homocysteine and computer-assisted analysis of disordered domains. Brain Res Rev. doi:10.1016/j.brainresrev.2007.10.003

  • Alnemri ES (2007) HtrA2 and Parkinson’s disease: think PINK? Nat Cell Biol 9(11):1227–1229

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Braak H, de Vos RA, Bohl J et al (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72

    Article  PubMed  CAS  Google Scholar 

  • Cabin DE, Shimazu K, Murphy D et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22(20):8797–8807

    PubMed  CAS  Google Scholar 

  • Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15(2):102–111

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Gallardo G, Fernández-Chacón R et al (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3):383–396

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, LeGall T, Oldfield CJ et al (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45:10448–10460

    Article  PubMed  CAS  Google Scholar 

  • Conforti L, Adalbert R, Coleman MP (2007) Neuronal death: where does the end begin? Trends Neurosci 30(4):159–166

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM et al (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294(5545):1346–1349

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR, Van der Brug M (2008) Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 209(1):5–11

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Nido J, Wandosell F, Avila J (2002) Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 23(7):1323–1332

    Article  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  • Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17(3):331–337

    Article  PubMed  CAS  Google Scholar 

  • Down TJ, Ambrose RF (2001) Syntropic ecotoxicology: a heuristic model for understanding the vulnerability of ecological systems to stress. Ecosystem Health 7(4):266–283

    Article  Google Scholar 

  • Dröge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6(3):361–370

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD et al (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (2006) The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39(9):628–634

    Article  PubMed  CAS  Google Scholar 

  • Fortin DL, Nemani VM, Voglmaier SM et al (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosi 25(47):10913–10921

    CAS  Google Scholar 

  • Fuxe K, Manger P, Genedani S et al (2006) The nigrostriatal DA pathway and Parkinson’s disease. J Neural Transm Suppl 70:71–83

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Marcellino D, Antonelli T et al (2008) The nigro-striatal DA neurons and mechanisms of their degeneration in Parkinson’s disease. In: Ribak C, Swanson L, Jones T, Lariva Sahd J, Aramburo de la Hoz C (eds) Development to degeneration and regeneration of the nervous system. Oxford University Press, Oxford

    Google Scholar 

  • Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59(3):449–458

    Article  PubMed  CAS  Google Scholar 

  • Gandhi S, Muqit MM, Stanyer L et al (2006) PINK1 protein in normal human brain and Parkinson’s disease. Brain 129(Pt 7):1720–1731

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Chang L, Viola KL et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100(18):10417–10422

    Article  PubMed  CAS  Google Scholar 

  • Gunasekaran K, Tsai CJ, Kumar S et al (2003) Extended disordered proteins: targeting function with less scaffold. Trends Biochem Sci 28:81–85

    Article  PubMed  CAS  Google Scholar 

  • Haynes C, Oldfield CJ, Ji F et al (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100

    Article  PubMed  CAS  Google Scholar 

  • Hoozemans JJ, Chafekar SM, Baas F et al (2006) Always around, never the same: pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer’s disease. Curr Med Chem 13(22):2599–2605

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1970) La Logique du Vivant. Une Historie de l’Heredite. Gallimard, France

  • James TL, Liu H, Ulyanov NB et al (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci USA 94:10086–10091

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1(2):279–293

    Article  PubMed  CAS  Google Scholar 

  • Kellings K, Meyer N, Mirenda C et al (1992) Further analysis of nucleic acids in purified scrapie prion preparations by improved return refocusing gel electrophoresis. J Gen Virol 73(Pt 4):1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22(11):1283–1296

    Article  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Ab1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  PubMed  CAS  Google Scholar 

  • Lee VM, Giasson BI, Trojanowski JQ (2004) More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases. Trends Neurosci 27(3):129–134

    Article  PubMed  CAS  Google Scholar 

  • Lee HG, Castellani RJ, Zhu X et al (2005) Amyloid-beta in Alzheimer’s disease: the horse or the cart? Pathogenic or protective? Int J Exp Path 86(3):133–138

    Article  CAS  Google Scholar 

  • Lee SJ (2008) Origins and effects of extracellular α-synuclein: implications in Parkinson’s disease. J Mol Neurosci 34:17–22

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Liu F (2008) Genetic factors involved in the pathogenesis of Parkinson’s disease. Brain Res Rev. doi:10.1016/j.brainresrev.2008.02.001

  • Linding R, Jensen LJ, Diella F et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Liu IH, Uversky VN, Munishkina LA et al (2005) Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation. Glycobiology 15(12):1320–1331

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P et al (2005) Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Pan Y, Price AC (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Mattson M (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I et al (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98(21):12245–12250

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF (2001) Does a vegan diet reduce risk for Parkinson’s disease? Med Hypotheses 57(3):318–323

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Halliday GM, Totterdell S (2004) A critical review of the development and importance of proteinaceous aggregates in animal models of Parkinson’s disease: new insights into Lewy body formation. Parkinsonism Relat Disord 10(4):191–202

    Article  PubMed  Google Scholar 

  • Mills RD, Sim CH, Mok SS et al (2008) Biochemical aspect of the neuroprotective mechanism of pten-induced kinase-1 (PINK1). J Neurochem. doi:10.1111/j.1471–4159.2008.05249.x

  • Minton AP (2000) Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol 10(1):34–39

    Article  PubMed  CAS  Google Scholar 

  • Outeiro TF, Tetzlaff J (2007) Mechanisms of disease II: cellular protein quality control. Semin Pediatr Neurol 14(1):15–25

    Article  PubMed  Google Scholar 

  • Paleologou KE, Schmid AW, Rospigliosi CC et al (2008) Phosphorylation at S129, but not the phosphomimics S129E/D inhibits the fibrilization of alpha-synuclein. J Biol Chem. doi:10.1074/jbc.M800747200

  • Parsonage D, Karplus PA, Poole LB (2007) Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci USA. doi:0.1073_pnas.0708308105

  • Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1(3):173–181

    Article  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1997) Prion Diseases and the BSE Crisis. Science 278:245–251

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Radivojac P, Obradovic Z, Brown CJ et al (2003) Prediction of boundaries between intrinsically ordered and disordered protein regions. Pac Symp Biocomput 8:216–227

    Google Scholar 

  • Radivojac P, Obradovic Z, Smith DK et al (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71–80

    Article  PubMed  CAS  Google Scholar 

  • Recchia A, Debetto P, Negro A et al (2004) α-Synuclein and Parkinson’s disease. FASEB J 18(6):617–626

    Article  PubMed  CAS  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28(10):1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Roher AE, Baudry J, Chaney MO et al (2000) Oligomerization and fibril assembly of the amyloid-beta protein. Biochim Biophys Acta 1502:31–43

    PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17

    Article  PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346(7):476–483

    Article  PubMed  CAS  Google Scholar 

  • Schrödinger E (1944) What is life? The physical aspects of the living cell. Cambridge University Press, London

    Google Scholar 

  • Shen XM, Li H, Dryhurst G (2000) Oxidative metabolites of 5-S-cysteinyldopamine inhibit the alpha-ketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson’s disease. J Neural Transm 107(8–9):959–978

    Article  PubMed  CAS  Google Scholar 

  • Shimoji M, Zhang L, Mandir AS et al (2005) Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Res Mol Brain Res 134(1):103–108

    Article  PubMed  CAS  Google Scholar 

  • Sidransky E (2006) Heterozygosity for a Mendelian disorder as a risk factor for complex disease. Clin Genet 70(4):275–282

    Article  PubMed  CAS  Google Scholar 

  • Stahl N, Baldwin MA, Teplow DB et al (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32:1991–2002

    Article  PubMed  CAS  Google Scholar 

  • Stephan A, Laroche S, Davis S (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21:5703–5714

    PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–250

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6(10):933–938

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi A (1977) Drive in living matter to perfect itself. Synthesis 1:14–26

    Google Scholar 

  • Terman A, Gustafsson B, Brunk UT (2006) Mitochondrial damage and intralysosomal degradation in cellular aging. Mol Aspects Med 27(5–6):471–482

    Article  PubMed  CAS  Google Scholar 

  • Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6(3):307–317

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194

    Google Scholar 

  • Thomas MP, Chartrand K, Reynolds A et al (2007) Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the pathogenesis of Parkinson’s disease. J Neurochem 100(2):503–519

    Article  PubMed  CAS  Google Scholar 

  • Toescu EC (2005) Normal brain ageing: models and mechanisms. Philos Trans R Soc Lond B Biol Sci 360(1464):2347–2354

    Article  PubMed  CAS  Google Scholar 

  • Unger JW (1998) Glial reaction in aging and Alzheimer’s disease. Microsc Res Tech 43:24–28

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. Neurochem 103(1):17–37

    CAS  Google Scholar 

  • Weathers EA, Paulaitis ME, Woolf TB et al (2004) Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Letters 576:348–352

    Article  PubMed  CAS  Google Scholar 

  • Yavich L, Tanila H, Vepsäläinen S et al (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24(49):11165–11170

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Zucca FA, Wilms H et al (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26(11):578–580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by an IRCCS and a PRIN grant. Thanks to Dott. A. Percesepe (Dep. of Medical Genetic) for suggestions on the Table.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Agnati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnati, L.F., Baldelli, E., Andreoli, N. et al. On the key role played by altered protein conformation in Parkinson’s disease. J Neural Transm 115, 1285–1299 (2008). https://doi.org/10.1007/s00702-008-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0072-1

Keywords

Navigation