Skip to main content
Log in

Signal and image approximation with level-set constraints

  • Published:
Computing Aims and scope Submit manuscript

Summary

We present a novel variational approach to signal and image approximation using filter statistics (histograms) as constraints. Given a set of linear filters, we study the problem to determine the closest point to given data while constraining the level-sets of the filter outputs. This criterion and the constraints are formulated as a bilevel optimization problem. We develop an algorithm by representing the lower-level problem through complementarity constraints and by applying an interior-penalty relaxation method. Based on a decomposition of the penalty term into the difference of two convex functions, the resulting algorithm approximates the data by solving a sequence of convex programs. Our approach allows to model and to study the generation of image structure through the interaction of two convex processes for spatial approximation and for preserving filter statistics, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anitescu M. (2005). On using the elastic mode in nonlinear programming approaches to mathematical programs with complementarity constraints. SIAM J Optim 15(4): 1203–1236

    Article  MATH  MathSciNet  Google Scholar 

  • An L.T.H. and Tao P.D. (2005). The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann Oper Res 133: 23–46

    Article  MATH  MathSciNet  Google Scholar 

  • Aujol J.-F., Gilboa G., Chan T. and Osher S. (2006). Structure-texture image decomposition – modeling, algorithms, parameter selection. Int J Comp Vision 67(1): 111–136

    Article  Google Scholar 

  • Boyd S. and Vandenberghe L. (2004). Convex optimization. Cambridge University Press, London

    MATH  Google Scholar 

  • Chambolle A. (2004). An algorithm for total variation minimization and applications. J Math Imaging Vis 20: 89–97

    Article  MathSciNet  Google Scholar 

  • Cottle R.W., Pang J.-S. and Stone R.E. (1992). The linear complementarity problem. Academic, Dublin

    MATH  Google Scholar 

  • Facchinei F. and Pang J.-S. (2003). Finite-dimensional variational inequalities and complementarity problems, vol. I. Springer, New York

    MATH  Google Scholar 

  • Field D.J. (1999). Wavelets, vision, the statistics of natural scenes. Philos Trans R Soc Lond A 357: 2527–2542

    Article  MATH  MathSciNet  Google Scholar 

  • Graham A. (1981). Kronecker products and matrix calculus with applications. Wiley, New York

    MATH  Google Scholar 

  • Horst R. and Thoai N.V. (1999). DC programming: overview. J Optim Theory Appl 103(1): 1–43

    Article  MathSciNet  Google Scholar 

  • Hu X.M. and Ralph D. (2004). Convergence of a penalty method for mathematical programming with complementarity constraints. J Optim Theory Appl 123(2): 365–390

    Article  MathSciNet  Google Scholar 

  • Lee A.B., Pedersen K.S. and Mumford D. (2003). The nonlinear statistics of high-contrast patches in natural images. Int J Comp Vision 54: 83–103

    Article  MATH  Google Scholar 

  • Leyffer S., Lopez-Calva G. and Nocedal J. (2006). Interior methods for mathematical programs with complementarity constraints. SIAM J Optim 17(1): 52–77

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z.-Q., Pang J.-S. and Ralph D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press, London

    Google Scholar 

  • Raghunathan A.U. and Biegler L.T. (2005). An interior point method for mathematical programs with complementarity constraints (MPCCs). SIAM J Optim 15(3): 720–750

    Article  MATH  MathSciNet  Google Scholar 

  • Rockafellar, R. T., Wets, R. J.-B.: Variational analysis. In: Grundlehren der math. Wissenschaften, vol. 317. Springer, New York (1998)

  • Rudin L., Osher S. and Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Phys D 60: 259–268

    Article  MATH  Google Scholar 

  • Scheel H. and Scholtes S. (2000). Mathematical program with complementarity constraints: stationarity, optimality and sensitivity. Math Oper Res 25: 1–22

    Article  MATH  MathSciNet  Google Scholar 

  • Scholtes S. (2001). Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J Optim 11(4): 918–936

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava A., Liu X. and Grenander U. (2002). Universal analytical forms for modeling image probabilities. IEEE Trans Pattern Anal Mach Intell 24(9): 1200–1214

    Article  Google Scholar 

  • Tao P.D. and An L.T.H. (1998). A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J Optim 8(2): 476–505

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu S.C. and Mumford D. (1997). Prior learning and gibbs reaction-diffusion. IEEE Trans Pattern Anal Mach Intell 19(11): 1236-1250

    Article  Google Scholar 

  • Zhu S.C., Wu Y. and Mumford D. (1998). Filters, random fields and maximum entropy (FRAME). Towards a unified theory for texture modeling. Int J Comp Vision 27(2): 107–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schnörr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnörr, C. Signal and image approximation with level-set constraints. Computing 81, 137–160 (2007). https://doi.org/10.1007/s00607-007-0246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-007-0246-y

AMS Subject Classifications

Keywords

Navigation