Skip to main content
Log in

Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report that fluorescent carbon nanodots (C-dots) can act as an optical probe for quantifying Sn(II) ions in aqueous solution. C-dots are synthesized by carbonization and surface oxidation of preformed sago starch nanoparticles. Their fluorescence is significantly quenched by Sn(II) ions, and the effect can be used to determine Sn(II) ions. The highest fluorescence intensity is obtained at a concentration of 1.75 mM of C-dots in aqueous solution. The probe is highly selective and hardly interfered by other ions. The quenching mechanism appears to be predominantly of the static (rather than dynamic) type. Under optimum conditions, there is a linear relationship between fluorescence intensity and Sn(II) ions concentration up to 4 mM, and with a detection limit of 0.36 μM.

Highly fluorescent carbon nanodots (CDs) were synthesized from preformed starch nanoparticles via a green synthetic method. The potential application of these CDs as a sensing probe for Sn(II) ions were evaluated. Our studies showed that CDs are highly sensitive and selective towards Sn(II) detection in aqueous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Unal U, Somer G (2011) Simultaneous determination of trace Sn(II) and Sn(IV) using differential pulse polarography and application. Turk J Chem 35:73–85

    Google Scholar 

  2. McClean JR, Birnboim HC, Pontefact R, Kaplan JG (1983) The effect of tin chloride on the structure and function of DNA in human white blood cells. Chem Biol Interact 46:189–200

    Article  Google Scholar 

  3. El-Makawy AI, Girgis SM, Khalil WKB (2008) Developmental and genetic toxicity of stanneous chloride in mouse dams and fetuses. Mutat Res 657:105–110

    Article  CAS  Google Scholar 

  4. Sturgeon RE, Willie SN, Berman SS (1987) Atomic absorption determination of tin using in situ concentration of stannane in a graphite furnace. Anal Chem 59:2441–2444

    Article  CAS  Google Scholar 

  5. Yang ZP, Alafandy M, Boutakhrit K, Kauffmann JM, Arcos J (2005) Electrochemical oxidation of 8-hydroxyquinoline and selective determination of tin (II) at solid electrodes. Electroanalysis 8:25–29

    Article  Google Scholar 

  6. Heppeler F, Sander S, Henze G (1996) Determination of tin traces in water samples by adsorptive stripping voltammetry. Anal Chim Acta 319:19–24

    Article  CAS  Google Scholar 

  7. Ichinoki S, Iwase H, Arakawa F, Hirano K, Fujii Y (2003) Selective determination of tin (II) ion in water by solvent extraction with salicylidenamino-2-thiophenol followed by reversed-phase high-performance liquid chromatography with photometric detection. J Liq Chromatogr Relat Technol 26:3129–3139

    Article  CAS  Google Scholar 

  8. Agarwal K, Patel KS, Shrivas K, Jain VK, Khan F (2009) On site determination of tin geological and water samples using novel organic reagent with iodide. J Hazard Mater 164:95–98

    Article  Google Scholar 

  9. Li T, Zhou Y, Sun J, Tang D, Guo S, Ding X (2011) Ultrasensitive detection of mercury(II) using CdTe quantum dots in sol–gel-derived silica spheres coated with calix[6]arene as fluorescent probes. Microchim Acta 175:113–119

    Article  CAS  Google Scholar 

  10. Liu B, Bao Y, Wang H, Du F, Tian Q, Li Q, Wang T, Bai R (2012) An efficient conjugated polymer sensor based on the aggregation-induced fluorescence quenching mechanism for the specific detection of palladium and platinum ion. J Mater Chem 22:3555–3561

    Article  CAS  Google Scholar 

  11. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots-characterization, preparation and usage in biological system. Int J Mol Sci 10:656–673

    Article  CAS  Google Scholar 

  12. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953

    Article  CAS  Google Scholar 

  13. Xiang Y, Xu XY, He DF, Li M, Liang LB, Yu XF (2011) Fabrication of rare-earth/quantum-dots nanocomposites for color-tunable sensing applications. J Nanoparticle Res 13:525–531

    Article  CAS  Google Scholar 

  14. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  15. Gomes SAO, Vieira CS, Almeida DB et al (2011) CdTe and CdSe quantum dots cytotoxicity: a comparative study on microorganisms. Sensors 11:11664–11678

    Article  CAS  Google Scholar 

  16. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475

    Article  CAS  Google Scholar 

  17. Zhou J, Sheng Z, Han H, Zou M, Li C (2012) Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 66:222–224

    Article  CAS  Google Scholar 

  18. Hsu PC, Chang HT (2012) Synthesis of high quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48:3984–3986

    Article  CAS  Google Scholar 

  19. Chin SF, Yazid SNAM, Pang SC, Ng SM (2012) Facile synthesis of fluorescent carbon nanodots from starch nanoparticles. Mater Lett 85:50–52

    Article  CAS  Google Scholar 

  20. Chin SF, Pang SC, Tay SH (2010) Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr Polym 86:1817–1819

    Article  Google Scholar 

  21. Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2008) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488

    Article  Google Scholar 

  22. Guo X, Wang CF, Yu ZY, Chen L, Chen S (2012) Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun 48:2692–2694

    Article  CAS  Google Scholar 

  23. Zhang S, He Q, Li R, Wang Q, Hu Z, Liu X, Chang X (2011) Study on the fluorescence carbon nanoparticles. Mater Lett 65:2371–2373

    Article  CAS  Google Scholar 

  24. Mao XJ, Zheng HZ, Long YJ, Du J, Hao JY, Wang LL, Zhou DB (2010) Study on the fluorescence characteristics of carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 75:553–557

    Article  Google Scholar 

  25. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809

    Article  CAS  Google Scholar 

  26. Li H, Zhai J, Sun X (2012) Sensitive and selective detection of silver ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform. Langmuir 27:4305–4308

    Article  Google Scholar 

  27. Zhou L, Lin Y, Huang RJ, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive and label free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149

    Article  CAS  Google Scholar 

  28. Koneswaran M, Narayanaswamy R (2009) Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sensors Actuators B 139:91–96

    Article  Google Scholar 

  29. Li H, Zhai J, Tian J, Luo Y, Sun X (2011) Carbon nanoparticles for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens Bioelectron 26:4656–4660

    Article  CAS  Google Scholar 

  30. Liu LQ, Li YF, Zhan L, Liu Y, Huang CZ (2011) One step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Sci China Chem 54:1342–1347

    Article  CAS  Google Scholar 

  31. Liu M, Xu L, Cheng W, Zheng Y, Yan Z (2008) Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination. Spectrochim Acta A 70:1198–1202

    Article  Google Scholar 

  32. El-Sheikh AH (2008) Effect of chemical treatment of multi-walled carbon nanotubes with various oxidizing agents on its preconcentration performance of some metals. Jordan J Chem 3:293–304

    CAS  Google Scholar 

  33. Sharma BK (2007) Environmental chemistry, 11th edn. GOEL Publishing House, Meerut, pp 31–32

    Google Scholar 

  34. Boutakhrit K, Yang ZP, Kauffmann JM (1995) Inorganic tin(II) determination by FIA with amperometric detection of its oxinate complex. Talanta 42:1883–1890

    Article  CAS  Google Scholar 

  35. Chandra S, Sharma K, Kumar A (2012) Tin(II) selective PVC membrane electrode based on salicylaldehydethiosemicarbazone as an ionophore. J Chem. doi:org/10.1155/2013/130372

  36. Tang J, Marcus RA (2006) Determination of energetic and kinetics from single-particle intermittency and ensemble-averaged fluorescence intensity decay of quantum dots. J Chem Phys 125:44703

    Article  Google Scholar 

  37. Ji XJ, Zheng JY, Xu JM, Rastogi VK, Cheng TC, DeFrank JJ, Leblanc RM (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799

    Article  CAS  Google Scholar 

  38. Dong CQ, Qian HF, Fang NH, Ren JC (2006) Study of fluorescence quenching and dialysis process of CdTe quantum dots using ensemble techniques and fluorescence correlation spectroscopy. J Phys Chem B 110:11069–11075

    Article  CAS  Google Scholar 

  39. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Academic/Plenum Press, New York, pp 239–247

    Google Scholar 

  40. Wu H, Liang J, Han H (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Ministry of Higher Education (MOHE) through Fundamental Research Grant Scheme (FRGS), grant number: 01(17)746/2010(32) and MyBrain15 (MyMaster) program for graduate scholarship were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Fun Chin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohd Yazid, S.N.A., Chin, S.F., Pang, S.C. et al. Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta 180, 137–143 (2013). https://doi.org/10.1007/s00604-012-0908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0908-0

Keywords

Navigation