Skip to main content
Log in

Symplectic microgeometry II: generating functions

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of the temporal evolution in classical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bates and A. Weinstein. Lectures on the geometry of quantization. Berkeley Mathematics Lecture Notes 8, Amer. Math. Soc. (1997).

  2. S. Benenti. The Hamilton-Jacobi equation for a Hamiltonian action. Geometrodynamics proceedings (Cosenza, 1983), 1–15; Coll. Atti Congr., Pitagora, (Bologna, 1984).

  3. A.S. Cattaneo, B. Dherin and A. Weinstein. Symplectic microgeometry I: micromorphisms. J. Symplectic Geom., 8 (2010), 205–223.

    MATH  MathSciNet  Google Scholar 

  4. A.S. Cattaneo, B. Dherin and A. Weinstein. Symplectic microgeometry III: quantization, in preparation.

  5. Z. Chen and Z.J. Liu. On (co-)morphisms of Lie pseudoalgebras and groupoids. J. Algebra, 316 (2007), 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  6. G.I. Eskin. Degenerate elliptic pseudodifferential operators of principal type. Mat. Sb., 82 (1970), 585–628; English transl., Math. USSR Sb., 11 (1970), 539–585.

    MathSciNet  Google Scholar 

  7. V. Guillemin and S. Sternberg. Geometric asymptotics. Mathematical Surveys 14, Amer. Math. Soc. (1977).

  8. L. Hörmander. Fourier integral operators, I. Acta Math., 127 (1971), 79–183.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. de M. Rios and A. Ozorio de Almeida. A variational principle for actions on symmetric symplectic spaces. J. Geom. Phys., 51 (2004), 404–441.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Ruzhansky. Singularities of affine fibrations in the theory of regularity of Fourier integral operators (Russian). Uspekhi Mat. Nauk, 55 (2000), 99–170; translation in Russian Math. Surveys, 55 (2000), 93–161.

    MATH  MathSciNet  Google Scholar 

  11. A. Weinstein. Symplectic manifolds and their Lagrangian submanifolds. Advances in Math., 6 (1971), 329–346.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Weinstein. Symplectic geometry. Bull. Amer. Math. Soc., 5 (1981), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Weinstein. Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc., 16 (1987), 101–104.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Zakrzewski. Hamiltonian group representations and phase actions. Rep. Math. Phys., 28 (1989), 189–196.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto S. Cattaneo.

About this article

Cite this article

Cattaneo, A.S., Dherin, B. & Weinstein, A. Symplectic microgeometry II: generating functions. Bull Braz Math Soc, New Series 42, 507–536 (2011). https://doi.org/10.1007/s00574-011-0027-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-011-0027-2

Keywords

Mathematical subject classification

Navigation