Skip to main content
Log in

Insight into the micro scale dynamics of a micro fluidic wetting-based conveying system by particle based simulation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We simulate a microfluidic conveying system using the many-body dissipative particle dynamics method (MDPD). The conveying system can transport micro parts to a specified spot on a surface by letting them float inside or on top of a droplet, which is pumped by changing the wetting behaviour of the substrate, e.g., with electrowetting on dielectrics. Subsequent evaporation removes the fluid; the micro part remains on its final position, where a second substrate can pick it up. In this way, the wetting control can be separate from the final device substrate. The MDPD method represents a fluid by particles, which are interpreted as a coarse graining of the fluid’s molecules. The choice of interaction forces allows for free surfaces. To introduce a contact angle model, non-moving particles beyond the substrate interact with the fluid particles by MDPD forces such that the required contact angle emerges. The micro part is simulated by particles with spring-type interaction forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquid. Clarendon, Oxford

  • Berge B (1993) Electrocapillarity and wetting of insulator films by water. C R Acad Sci Ser II Mech Phys Chim Sci Terre Univ 317:157–163

    Google Scholar 

  • Buff FP (1956) Curved fluid interfaces. I. the generalized Gibbs–Kelvin equation. J Chem Phys 25(1):146–153

    Article  MathSciNet  Google Scholar 

  • Bykhovskii AI (1974) Effects of external influences on the spreading of a liquid phase on a crystal surface—a review. Poroshkovaya Metallurgiya 133(1):50–62 (Translated from Poroshkovaya Metallurgiya)

    Google Scholar 

  • Chiou PY, Moon H, Toshiyoshi H, Kim C-J, Wu MC (2003) Light actuation of liquid by optoelectrowetting. Sens Actuators A Phys A104(3):222–228

    Article  Google Scholar 

  • Cho SK, Moon H, Fowler J, Kim C-J (2001) Splitting a liquid droplet for electrowetting-based microfluidics. In: Proceedings of the ASME IMECE, Number IMECE2001/MEMS-23831, NY

  • Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  • Decamps C, Coninck JD (2000) Dynamics of spontaneous spreading under electrowetting conditions. Langmuir 16(26):10150–10153

    Article  Google Scholar 

  • Dimitrakopoulos P, Higdon JJL (1997) Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows. J Fluid Mech 336:351–378

    Article  MATH  Google Scholar 

  • Español P (1995) Hydrodynamics from dissipative particle dynamics. Phys Rev E 52(2):1734–1742

    Article  MathSciNet  Google Scholar 

  • Feenstra BJ, Hayes RA, van Dijk R, Boom RGH, Wagemans MMH, Camps IGJ, Giraldo A, Heijden Bvd (2006) Electrowetting-based displays: bringing microfluidics alive on-screen. In: Proceedings of the IEEE MEMS Istanbul, Turkey, pp 48–53

  • Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736

    Article  Google Scholar 

  • Gurrum SP, Murthy S, Joshi YK (2002) Numerical simulation of thermocapillary pumping using level set method. In: Proceedings of the 5th ISHMT/ASME HMTC, Kolkota, India

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  • Ivošević N, Žutić V (1998) Spreading and detachment of organic droplets at an electrified interface. Langmuir 14(7):231–234

    Google Scholar 

  • Janocha B, Bauser H, Oehr C, Brunner H, Göpel W (2000) Competitive electrowetting of polymer surfaces by water and decane. Langmuir 16(7):3349–3354

    Article  Google Scholar 

  • Karlsson R, Karlsson M, Karlsson A, Cans A-S, Bergenholtz J, Åkerman B, Ewing AG, Voinova M, Orwar O (2002) Moving-wall-driven flows in nanofluidic systems. Langmuir 18(11):4186–4190

    Article  Google Scholar 

  • Kauzlaric D, Greiner A, Korvink J, Schulz M, Heldele R (2005) M of advanced micro and nanosystems, chapter modeling micro PIM, Wiley-VCH, Weinheim, pp 51–84. http://dx.doi.org/10.1002/9783527616725

  • Kim C-J (2001) Micropumping by electrowetting. In: Proceedings of the ASME IMECE, Number IMECE2001/HTD-24200, NY

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: Proceedings of the IFAC Symposium on computer aided design of control systems, Zürich, pp 113–117

  • Lazarou P, Aspragathos N, Jung E (2006) Micropart manipulation by electrical fields for highly parallel batch assembly. In: Proceedings of the 4M Conference 2006, Grenoble, France

  • Lee J, Kim C-J (1999) Theory and modeling of continuous electrowetting microactuation. In: Proceedings of the MEMS (MEMS-vol 1), ASME IMECE, vol 1, Nashville, TN, pp 397–403

  • Lee J, Kim C-J (2000) Surface tension driven microactuation based on continuous electrowetting (CEW). J Microelectromech Syst 9(2):171–180

    Article  MATH  Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensor Actuat A Phys 95(2–3):259–268

    Article  Google Scholar 

  • Lienemann J, Greiner A, Korvink JG (2006) Modeling, simulation and optimization of electrowetting. IEEE T Comput Aid D (Special Issue on Design Automation Methods and Tools for Microfluidics-Based Biochips) 25(2):234–247

    Google Scholar 

  • Lienemann J, Greiner A, Korvink JG, Xiong X, Hanein Y, Böhringer KF (2004) Modelling, simulation and experimentation of a promising new packaging technology—parallel fluidic self-assembly of micro devices. Sens Update 13:3–43

    Article  Google Scholar 

  • Monaghan JJ (1988) An introduction to sph. Comput Phys Commun 48(1):89–96

    Article  MATH  Google Scholar 

  • Moon I, Kim J (2006) Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens Actuators A Phys 130–131:537–544

    Article  Google Scholar 

  • Moriarty JA, Schwartz LW, Tuck EO (1991) Unsteady spreading of thin liquid films with small surface tension. Phys Fluids A Fluid 3(5):733–742

    Article  MATH  Google Scholar 

  • Nakamura Y, Kamada K, Katoh Y, Watanabe A (1973) Studies on secondary electrocapillary effects: I. The confirmation of the Young–Dupré equation. J Colloid Interf Sci 44(3):517–524

    Article  Google Scholar 

  • Nakamura Y, Matsumoto M, Nishizawa K, Kamada K, Watanabe A (1977) Studies on secondary electrocapillary effects: II. The electrocapillary phenomena in thin liquid film. J Colloid Interf Sci 59(2):201–210

    Article  Google Scholar 

  • Noguchi H, Gompper G (2007) Transport coefficients of dissipative particle dynamics with finite time step. Europhys Lett 79(3):36002. doi:10.1209/0295-5075/79/36002

    Google Scholar 

  • Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115(11):5015–5026

    Article  Google Scholar 

  • Peters EAJF (2004) Elimination of time step effects in DPD. Europhys Lett 66(3):311–317

    Article  Google Scholar 

  • Rübenkönig O (2008) Free surface flow and the IMTEK mathematica supplement. PhD thesis, University of Freiburg, Germany

  • Sammarco TS, Burns MA (1999) Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J 45(2):350–366

    Article  Google Scholar 

  • Sammarco TS, Burns MA (2000) Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices. J Micromech Microeng 10(1):42–55

    Article  Google Scholar 

  • Schneemilch M, Welters WJJ, Hayes RA, Ralston J (2000) Electrically induced changes in dynamic wettability. Langmuir 16(6):2924–2927

    Article  Google Scholar 

  • Trofimov SY, Nies ELF, Michels MAJ (2002) Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys 117(20):9383–9394

    Article  Google Scholar 

  • Trozzi C, Ciccotti G (1984) Stationary nonequilibrium states by molecular dynamics. II. Newton’s law. Phys Rev A 29(2):916–925

    Article  Google Scholar 

  • Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11(4):583–591

    Article  Google Scholar 

  • Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15(20):6616–6620

    Article  Google Scholar 

  • Warren PB (2003) Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E 68(6):066702

    Article  Google Scholar 

  • Zeng J (2004) Electrohydrodynamic modeling and simulation and its application to digital microfluidics. In: Lab-on-a-Chip. Proceedings of the SPIE, vol 5591, pp 125–142

Download references

Acknowledgments

The authors acknowledge complete funding by the DFG via the project Electrowetting-Simulation mit Partikelmethoden (Grant No. LI 1831/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Weiß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lienemann, J., Weiß, D., Greiner, A. et al. Insight into the micro scale dynamics of a micro fluidic wetting-based conveying system by particle based simulation. Microsyst Technol 18, 523–530 (2012). https://doi.org/10.1007/s00542-012-1460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1460-x

Keywords

Navigation