Skip to main content
Log in

FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose

Progressive familial intrahepatic cholestasis type 1 (PFIC1) is a specific form of genetic cholestasis caused by functional defects in FIC1/ATP8B1. Although the way FIC1 deficiency leads to PFIC1 remains unclear, some reports suggest that the loss of FIC1 function results in decreased activity of the farnesoid X receptor (FXR) in PFIC1 patients. In this study, in order to elucidate the molecular mechanism of the pathogenesis of PFIC1, we constructed an experimental system for the evaluation of FIC1-mediated stimulatory effects on FXR activity.

Methods and results

Luciferase assays revealed that FIC1 expression increased FXR-dependent transcription and that the effects of three PFIC1 mutants (G308V, T456M and D554N) were smaller than that of wild-type FIC1. In addition, the PFIC1 mutants could not locate to the plasma membrane even in the presence of CDC50A, which brings wild-type FIC1 to the plasma membrane. The results of coprecipitation assays suggested a defect in the ability of the PFIC1 mutants to interact with CDC50A. Furthermore, it was revealed that the expression of CDC50A elevated the FIC1-mediated transcriptional stimulation when coexpressed with wild-type FIC1, but not with mutated FIC1.

Conclusions

These results suggest that the PFIC1 mutants have a lower stimulatory effect on FXR activity and cannot interact with CDC50A, which may lead to the development of the features of PFIC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muller M, Jansen PL. The secretory function of the liver: new aspects of hepatobiliary transport. J Hepatol. 1998;28:344–54.

    Article  PubMed  CAS  Google Scholar 

  2. Green RM, Hoda F, Ward KL. Molecular cloning and characterization of the murine bile salt export pump. Gene. 2000;241:117–23.

    Article  PubMed  CAS  Google Scholar 

  3. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998;273:10046–50.

    Article  PubMed  CAS  Google Scholar 

  4. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol. 1998;274:G157–69.

    PubMed  CAS  Google Scholar 

  5. Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest. 1995;95:745–54.

    Article  PubMed  CAS  Google Scholar 

  6. Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994;269:1340–7.

    PubMed  CAS  Google Scholar 

  7. Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, et al. The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem. 2005;280:6960–8.

    Article  PubMed  CAS  Google Scholar 

  8. Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA. The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci USA. 2008;105:3891–6.

    Article  PubMed  CAS  Google Scholar 

  9. Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest. 1994;93:1326–31.

    Article  PubMed  CAS  Google Scholar 

  10. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA. 1991;88:10629–33.

    Article  PubMed  CAS  Google Scholar 

  11. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  PubMed  CAS  Google Scholar 

  12. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    Article  PubMed  CAS  Google Scholar 

  13. Plass JR, Mol O, Heegsma J, Geuken M, Faber KN, Jansen PL, et al. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology. 2002;35:589–96.

    Article  PubMed  CAS  Google Scholar 

  14. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001;276:28857–65.

    Article  PubMed  CAS  Google Scholar 

  15. Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai SY, Moustafa T, et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1124–30.

    Article  PubMed  CAS  Google Scholar 

  16. Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol. 2006;290:G912–22.

    Article  PubMed  CAS  Google Scholar 

  17. Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, et al. Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol. 2006;290:G923–32.

    Article  PubMed  CAS  Google Scholar 

  18. Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol. 2006;290:G476–85.

    Article  PubMed  CAS  Google Scholar 

  19. Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res. 2006;47:201–14.

    Article  PubMed  CAS  Google Scholar 

  20. Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, et al. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm Res. 2007;24:390–8.

    Article  PubMed  CAS  Google Scholar 

  21. Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, et al. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem. 2003;278:19909–16.

    Article  PubMed  CAS  Google Scholar 

  22. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology. 2001;121:140–7.

    Article  PubMed  CAS  Google Scholar 

  23. Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet. 1998;18:219–24.

    Article  PubMed  CAS  Google Scholar 

  24. Holthuis JC, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol. 2005;6:209–20.

    Article  PubMed  CAS  Google Scholar 

  25. Paulusma CC, Oude Elferink RP. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim Biophys Acta. 2005;1741:11–24.

    PubMed  CAS  Google Scholar 

  26. Chen F, Ananthanarayanan M, Emre S, Neimark E, Bull LN, Knisely AS, et al. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology. 2004;126:756–64.

    Article  PubMed  CAS  Google Scholar 

  27. Alvarez L, Jara P, Sanchez-Sabate E, Hierro L, Larrauri J, Diaz MC, et al. Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet. 2004;13:2451–60.

    Article  PubMed  CAS  Google Scholar 

  28. Noji T, Yamamoto T, Saito K, Fujimura-Kamada K, Kondo S, Tanaka K. Mutational analysis of the Lem3p-Dnf1p putative phospholipid-translocating P-type ATPase reveals novel regulatory roles for Lem3p and a carboxyl-terminal region of Dnf1p independent of the phospholipid-translocating activity of Dnf1p in yeast. Biochem Biophys Res Commun. 2006;344:323–31.

    Article  PubMed  CAS  Google Scholar 

  29. Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, et al. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic. 2006;7:1503–17.

    Article  PubMed  CAS  Google Scholar 

  30. Saito K, Fujimura-Kamada K, Furuta N, Kato U, Umeda M, Tanaka K. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell. 2004;15:3418–32.

    Article  PubMed  CAS  Google Scholar 

  31. Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology. 2008;47:268–78.

    Article  PubMed  CAS  Google Scholar 

  32. Noe J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology. 2002;123:1659–66.

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi H, Takada T, Suzuki H, Akita H, Sugiyama Y. Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology. 2005;41:916–24.

    Article  PubMed  CAS  Google Scholar 

  34. Iwayanagi Y, Takada T, Suzuki H. HNF4alpha is a crucial modulator of the cholesterol-dependent regulation of NPC1L1. Pharm Res. 2008;25:1134–41.

    Article  PubMed  CAS  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  36. Klomp LW, Vargas JC, van Mil SW, Pawlikowska L, Strautnieks SS, van Eijk MJ, et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology. 2004;40:27–38.

    Article  PubMed  CAS  Google Scholar 

  37. van Mil SW, van Oort MM, van den Berg IE, Berger R, Houwen RH, Klomp LW. Fic1 is expressed at apical membranes of different epithelial cells in the digestive tract and is induced in the small intestine during postnatal development of mice. Pediatr Res. 2004;56:981–7.

    Article  PubMed  Google Scholar 

  38. Eppens EF, van Mil SW, de Vree JM, Mok KS, Juijn JA, Oude Elferink RP, et al. FIC1, the protein affected in two forms of hereditary cholestasis, is localized in the cholangiocyte and the canalicular membrane of the hepatocyte. J Hepatol. 2001;35:436–43.

    Article  PubMed  CAS  Google Scholar 

  39. Ujhazy P, Ortiz D, Misra S, Li S, Moseley J, Jones H, et al. Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology. 2001;34:768–75.

    Article  PubMed  CAS  Google Scholar 

  40. Pawlikowska L, Groen A, Eppens EF, Kunne C, Ottenhoff R, Looije N, et al. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Hum Mol Genet. 2004;13:881–92.

    Article  PubMed  CAS  Google Scholar 

  41. Paulusma CC, Groen A, Kunne C, Ho-Mok KS, Spijkerboer AL, Rudi de Waart D, et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology. 2006;44:195–204.

    Article  PubMed  CAS  Google Scholar 

  42. Lykavieris P, van Mil S, Cresteil D, Fabre M, Hadchouel M, Klomp L, et al. Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation. J Hepatol. 2003;39:447–52.

    Article  PubMed  Google Scholar 

  43. Knisely AS. Progressive familial intrahepatic cholestasis: a personal perspective. Pediatr Dev Pathol. 2000;3:113–25.

    Article  PubMed  CAS  Google Scholar 

  44. Groen A, Kunne C, Paulusma CC, Kramer W, Agellon LB, Bull LN, et al. Intestinal bile salt absorption in Atp8b1 deficient mice. J Hepatol. 2007;47:114–22.

    Article  PubMed  CAS  Google Scholar 

  45. Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, et al. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol. 2008;22:2433–47.

    Article  PubMed  CAS  Google Scholar 

  46. Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N, et al. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology. 2008;48:1896–905.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tappei Takada.

Additional information

S. Koh and T. Takada contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, S., Takada, T., Kukuu, I. et al. FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells. J Gastroenterol 44, 592–600 (2009). https://doi.org/10.1007/s00535-009-0041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0041-y

Keywords

Navigation