Skip to main content

Advertisement

Log in

Global methane emission through mud volcanoes and its past and present impact on the Earth's climate

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mud volcanism is an abundant, global phenomenon whereby fluid-rich, low-density sediments extrude both on land and offshore. Methane, which generally exceeds 90 vol% of the gas phase, is emitted at high rates during and after emplacement of the mud domes and is known for its high global warming potential (GWP). This comprehensive estimate of the annual contribution of mud volcano degassing assesses the significance of mud volcanism for the accumulation of greenhouse gases in the atmosphere. A first-order estimate for the earlier, pre-anthropogenic volume of methane released through mud volcanoes further supports their profound effect on the Earth's climate since at least the Paleozoic (570 Ma).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Aloisi G, Asjes S, Bakker K, Bakker M, Charlou JL, De Lange GJ, Donval J-P, Fiala-Medoni A, Foucher JP, Haanstra R, Haese R, Heijs S, Henry P, Huguen C, Jelsma B, De Lint S, Van der Maarel M, Mascle J, Muzet S, Nobbe G, Pancost R, Pelle H, Pierre C, Polman W, De Senerpont Domis L, Sibuet M, van Wijk T, Woodside JM, Zitter T (2000) Linking Mediterranean brine pools and mud volcanism. EOS Trans AGU 81/51:625–632

    Google Scholar 

  • Bagirov E, Lerche I (1998) Flame hazards in the South Caspian Basin. Energy Explor Exploit 16:373–397

    Google Scholar 

  • Bagirov E, Nadirov R, Lerche I (1996) Flaming eruptions and ejections from mud volcanoes in Azerbaijan: statistical risk assessment from the historical records. Energy Explor Exploit 14:535–583

    Google Scholar 

  • Barber AJ, Tjokrosapoetro S, Charlton TR (1986) Mud volcanoes, shale diapirs, wrench faults and mélanges in accretionary complexes, eastern Indonesia. AAPG Bull 70:1729–1741

    Google Scholar 

  • Brantley SL, Koepenick KW (1995) Measured carbon dioxide emissions from Oldoinyo Lengai and the skewed distribution of passive volcanic fluxes. Geology 23:933–936

    Article  CAS  Google Scholar 

  • Brown KM (1990) The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J Geophys Res 95:8969–8982

    Google Scholar 

  • Chiodini G, D'Alessandro W, Parello F (1996) Geochemistry of gases and waters discharged by the mud volcanoes at Paterno, Mt. Etna (Italy). Bull Volcanol 58:51–58

    Article  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biochem Cycles 2/4:299–327

    Google Scholar 

  • Clayton JL, Leventhal JS, Rice DD (1995) Atmospheric methane flux from coals. US Geol Surv Circ C1108:78–79

    Google Scholar 

  • De Lange GJ, Brumsack H-J (1998) Pore water indications for the occurrence of gas hydrates in eastern Mediterranean mud dome structures. In: Proc ODP, Scientific Results, College Station, Texas, Rep 160, pp 569–574

  • Dickens GR, O'Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10(6):965–971

    Google Scholar 

  • Dimitrov LI (2002) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76

    Article  CAS  Google Scholar 

  • Etiope G, Klusmann RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789

    Article  CAS  PubMed  Google Scholar 

  • Etiope G, Caracausi A, Favara R, Italiano F, Baciu C (2002) Methane emission from the mud volcanoes of Sicily (Italy). Geophys Res Lett 29:10.1029/2001GL014340, 4 pp

    Article  Google Scholar 

  • Guliev IS (1992) A review of mud volcanism. Azerbaijan Academy of Sciences, Institute of Geology, Azerbaijan, 65 pp

  • Hedberg H (1974) Relation of methane generation to undercompacted shales, shale diapirs and mud volcanoes. AAPG Bull 58:661–673

    CAS  Google Scholar 

  • Henry P, Le Pichon X, Lallemant S, Lance S, Martin JB, Foucher J-P, Fiala-Médioni A, Rostek F, Guilhaumou N, Pranal V, Castrec M (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J Geophys Res 101:20297–20323

    CAS  Google Scholar 

  • Higgins GE, Saunders JB (1974) Mud volcanoes—their nature and origin. Verh Naturforsch Ges Basel 84:101–152

    Google Scholar 

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res 104:20703–20711

    CAS  Google Scholar 

  • Hovland M, Judd AG, Burke RA Jr (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26:553–578

    Google Scholar 

  • Hovland M, Hill A, Stokes D (1997) The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology 21:1–15

    Article  Google Scholar 

  • ICPP (2001) Technical summary of working group report. 63 pp

  • Jakubov AA, Ali-Zade AA, Zeinalov MM (1971) Mud volcanoes of the Azerbaijan SSR. Academy of Sciences of the Azerbaijan SSR, Baku, 257 pp

  • Jevanshir RD (2002) All about mud volcanoes. Geol Inst Azerbaijan Acad Sci (Nafta Press), Azerbaijan, 97 pp

  • Judd AG, Hovland M, Dimitrov LI, Garcia Gil S, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126

    Article  CAS  Google Scholar 

  • Kopf A (1999) Fate of sediment during plate convergence at the Mediterranean Ridge accretionary complex: volume balance of mud extrusion versus subduction–accretion. Geology 27:87–90

    Article  Google Scholar 

  • Kopf A (2002) Significance of mud volcanism. Rev Geophysics 40:10.1029/2000RG000093, 52 pp

    Google Scholar 

  • Kopf A, Robertson AHF, Clennell MB, Flecker R (1998) Mechanism of mud extrusion on the Mediterranean Ridge. GeoMar Lett 18:97–114

    Article  Google Scholar 

  • Kopf A, Klaeschen D, Mascle J (2001) Extreme efficiency of mud volcanism in dewatering accretionary prisms. Earth Planet Sci Lett 189:295–313

    Article  CAS  Google Scholar 

  • Kuo LC (1996) Gas exsolution during fluid migration and its relation to overpressure and petroleum accumulation. Mar Petrol Geol 14:221–229

    Article  Google Scholar 

  • Lavrushin VU, Polyak BG, Prasolov RM, Kamenskii IL (1996) Sources of material in mud volcano products (based on isotopic, hydrochemical, and geological data). Lithol Miner Resour 31:557–578

    Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res 86:7210–7254

    CAS  Google Scholar 

  • Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145:233–248

    Article  CAS  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  CAS  Google Scholar 

  • Milkov AV, Sassen R, Apanasovich TV, Dadashev FG (2003) Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys Res Lett 30:10.1029/2002GL016358, 4 pp

    Article  Google Scholar 

  • Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135

    Google Scholar 

  • Nisbet E (1990) Climate change and methane. Nature 347:23

    Article  Google Scholar 

  • Quay PD, King SL, Stutsman J, Steele LP, Fung I, Gammon RH, Brown TA, Farwell GW, Grootes PW, Smidt FH (1991) Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths. Global Biogeochem Cycles 5:25–47

    CAS  Google Scholar 

  • Redwood B (1913) The association of mud-volcanoes with petroleum. A treatise on petroleum. Vols 1–3, and especially the bibliography, vol 3, p 187ff. C. Griffin, London

  • Reed DL, Silver EA, Tagudin JE, Shipley TH, Vrolijk P (1990) Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Mar Petrol Geol 7:44–54

    Google Scholar 

  • Rehder G, Keir RS, Suess E, Rhein M (1999) Methane in the northern Atlantic controlled by oxidation and atmospheric history. Geophys Res Lett 26:587–590

    CAS  Google Scholar 

  • Robertson AHF, Scientific Party of ODP Leg 160 (1996) Mud volcanism on the Mediterranean Ridge: initial results of Ocean Drilling Program Leg 160. Geology 24:239–242

    Article  CAS  Google Scholar 

  • Sassen R, Losh S, Cathles L, Roberts H, Whelan JK, Milkov AV, Sweet ST, DeFreitas DA (2001) Massive vein-filling gas hydrate: relation to ongoing gas migration from the deep subsurface Gulf of Mexico. Mar Petrol Geol 18:551– 560

    Article  CAS  Google Scholar 

  • Scranton MI, Brewer PG (1978) Consumption of dissolved methane in the deep ocean. Limnol Oceanogr 23:1207–1213

    Google Scholar 

  • Sondhi VP (1947) The Makran earthquake, 28th November 1945, the birth of new islands. Ind Miner (Geol Surv India) 1/3:146–154

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    CAS  Google Scholar 

  • Terzaghi K (1947) Shear characteristics of quicksand and soft clay. In: Proc 7th Texas Conference on Soil Mechanics and Foundation Engineering, Houston, pp 1–10

  • Trehu AM, Torres ME, Moore GF, Suess E, Bohrmann G (1999) Temporal and spatial evolution of a gas hydrate accretionary ridge on the Oregon continental margin. Geology 27:939–942

    Article  CAS  Google Scholar 

  • von Rad U, Berner U, Delisle G, Doose H, Fechner N, Linke P, Lückge A, Roeser H, Schmaljohann R, Wiedicke M, SO122/130 scientific parties (2000) Gas and fluid venting at the Makran accretionary wedge off Pakistan: initial results. GeoMar Lett 20:10–19

    Google Scholar 

  • Ward BB, Kilpatrick KA, Novelli PC, Scranton MI (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327:226–229

    Article  CAS  Google Scholar 

  • Welhan JA, Craig H (1979) Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geophys Res Lett 6:829–831

    CAS  Google Scholar 

  • Williams SN, Schaefer SJ, Calvache ML, Lopez D (1992) Global carbon dioxide emission to the atmosphere by volcanoes. Geochim Cosmochim Acta 56:1765–1770

    CAS  Google Scholar 

  • Yassir NA (1989) Mud volcanoes and the behaviour of overpressured clays and silts. PhD Thesis, University College London, 249 pp

Download references

Acknowledgments

I am grateful to Jan Behrmann for first having pointed out mud volcanism to me, and to Ernst Flueh for having provided the serene working environment for this study. The paper benefited from the suggestions by Simona Cavagna and an anonymous referee. Special thanks go to Christian Dullo for the superb editorial handling which helped to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim J. Kopf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopf, A.J. Global methane emission through mud volcanoes and its past and present impact on the Earth's climate. Int J Earth Sci (Geol Rundsch) 92, 806–816 (2003). https://doi.org/10.1007/s00531-003-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0341-z

Keywords

Navigation