Skip to main content
Log in

The canonical shrinking soliton associated to a Ricci flow

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

To every Ricci flow on a manifold \({\mathcal{M}}\) over a time interval \({I\subset\mathbb{R}_-}\), we associate a shrinking Ricci soliton on the space–time \({\mathcal{M}\times I}\). We relate properties of the original Ricci flow to properties of the new higher-dimensional Ricci flow equipped with its own time-parameter. This geometric construction was discovered by consideration of the theory of optimal transportation, and in particular the results of the second author Topping (J Reine Angew Math 636:93–122, 2009), and McCann and the second author (Am J Math 132:711–730, 2010); we briefly survey the link between these subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabezas-Rivas, E., Topping, P.M.: The canonical expanding soliton and Harnack inequalities for Ricci flow. To appear, Trans. Am. Math. Soc. http://www.warwick.ac.uk/~maseq

  2. Chow B., Chu S.-C.: A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow. Math. Res. Lett. 2, 701–718 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Chow B., Chu S.-C.: Space–time formulation of Harnack inequalities for curvature rows of hypersurfaces. J. Geom. Anal. 11, 219–231 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Chow B., Knopf D.: New Li–Yau–Hamilton inequalities for the Ricci flow via the space–time approach. J. Differ. Geom. 60, 1–54 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow. Graduate Studies in Mathematics, 77. American Mathematical Society, Providence, RI; Science Press, New York (2006)

  6. Gromov M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Hamilton R.S.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Hamilton, R.S.: The formation of singularities in the Ricci flow. Surveys in differential geometry, vol. II (Cambridge, 1993), pp. 7–136. International Press, Cambridge (1995)

  10. Li P., Yau S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  11. Lott J.: Optimal transport and Perelman’s reduced volume. Calc. Var. Partial Differ. Equ. 36, 49–84 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. McCann R.J., Topping P.M.: Ricci flow, entropy and optimal transportation. Am. J. Math. 132, 711–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. http://arXiv.org/abs/math/0211159v1 (2002)

  14. Perelman, G.: Ricci flow with surgery on three-manifolds. http://arxiv.org/abs/math/0303109v1 (2003)

  15. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. http://arXiv.org/abs/math/0307245v1 (2003).

  16. Sturm K.-T., von Renesse M.-K.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)

    Article  MATH  Google Scholar 

  17. Topping, P.M.: Lectures on the Ricci flow. L.M.S. Lecture Notes Series 325 C.U.P. http://www.warwick.ac.uk/~maseq/RFnotes.html (2006)

  18. Topping P.M.: \({\mathcal{L}}\)-optimal transportation for Ricci flow. J. Reine Angew. Math. 636, 93–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Cabezas-Rivas.

Additional information

Communicated by G. Huisken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabezas-Rivas, E., Topping, P.M. The canonical shrinking soliton associated to a Ricci flow. Calc. Var. 43, 173–184 (2012). https://doi.org/10.1007/s00526-011-0407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0407-x

Mathematics Subject Classification (2000)

Navigation