Skip to main content
Log in

Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Cam-Clay nonassociative plasticity exhibits both hardening and softening behaviour, depending on the loading. For many initial data the classical formulation of the quasistatic evolution problem has no smooth solution. We propose here a notion of generalized solution, based on a viscoplastic approximation. To study the limit of the viscoplastic evolutions we rescale time, in such a way that the plastic strain is uniformly Lipschitz with respect to the rescaled time. The limit of these rescaled solutions, as the viscosity parameter tends to zero, is characterized through an energy-dissipation balance, that can be written in a natural way using the rescaled time. As shown in Dal Maso and DeSimone (Math Models Methods Appl Sci 19:1–69, 2009) and Dal Maso and Solombrino (Netw Heterog Media 5:97–132, 2010), the proposed solution may be discontinuous with respect to the original time. Our formulation allows us to compute the amount of viscous dissipation occurring instantaneously at each discontinuity time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boccardo L., Murat F.: Remarques sur l’homogénéisation de certains problèmes quasi-linéaires. Portugal. Math. 41, 535–562 (1982)

    MATH  MathSciNet  Google Scholar 

  2. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland/American Elsevier, Amsterdam/New York (1973)

  3. Buttazzo G.: Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Research Notes in Mathematics Series. Longman, Harlow (1989)

    Google Scholar 

  4. Dal Maso G., DeSimone A., Mora M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180, 237–291 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dal Maso G., Demyanov A., DeSimone A.: Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75, 117–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dal Maso G., DeSimone A.: Quasistatic evolution problems for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19, 1–69 (2009)

    Article  MathSciNet  Google Scholar 

  7. Dal Maso G., Solombrino F.: Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heterog. Media 5, 97–132 (2010)

    Article  MathSciNet  Google Scholar 

  8. Dal Maso, G., DeSimone, A., Solombrino, F.: Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution (in preparation)

  9. Doob J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  10. Duvaut G., Lions J.-L.: Inequalities in Mechanics and Physics. Grundlehren der Mathematischen Wissenschaften, vol. 219. Springer, Berlin (1976)

    Google Scholar 

  11. Efendiev M., Mielke A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13, 151–167 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). Translation of Analyse convexe et problèmes variationnels. Dunod, Paris (1972)

  13. Gagliardo E.: Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27, 284–305 (1957)

    MATH  MathSciNet  Google Scholar 

  14. Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hahn H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)

    Google Scholar 

  16. Henstock R.: A Riemann-type integral of Lebesgue power. Can. J. Math. 20, 79–87 (1968)

    MATH  MathSciNet  Google Scholar 

  17. Hughes T.J.R., Taylor R.: Unconditionally stable algorithms for quasi-static elasto-viscoplastic finite element analysis. Comput. Struct. 8, 169–173 (1978)

    Article  MATH  Google Scholar 

  18. Matthies, H., Strang, G., Christiansen, E.: The saddle point of a differential program. In: Glowinski, R., Rodin, E., Zienkiewicz, O.C. (eds.) Energy Methods in Finite Element Analysis, pp. 309–318. Wiley, New York (1979)

  19. Mawhin, J.: Analyse. Fondements, techniques, évolution. Second edn. Accès Sciences. De Boeck Université, Brussels (1997)

  20. Mielke A., Rossi R., Savaré G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discret. Cont. Dyn. Syst. 25, 585–615 (2009)

    Article  MATH  Google Scholar 

  21. Mielke, A., Rossi, R., Savaré, G.: BV-solutions of the viscosity approximation of rate-independent systems. WIAS Preprint, Berlin (2009)

  22. Moreau, J.J.: Champs et distributiond de tenseurs déformation sur un ouvert de connexité quelconque. Séminaire d’analyse convexe, vol. 6. Université de Montpellier, Montpellier (1976)

  23. Ortiz, M.: Topics in constitutive theory for inelastic solids. PhD thesis, University of California, Berkeley (1981)

  24. Perzyna P.: Thermodynamic theory of viscoplasticity. Adv. Appl. Mech. 11, 313–354 (1971)

    Article  Google Scholar 

  25. Phillips R.B.: Crystals, Defects and Microstructures. Modeling Across Scales. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  26. Reshetnyak Y.G.: Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9, 1039–1045 (1968)

    MATH  Google Scholar 

  27. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Rossi, R.: Interazione di norme L 2 e L 1 in evoluzioni rate-independent. Lecture given at the “XIX Convegno Nazionale di Calcolo delle Variazioni”, Levico (Trento), February 8–13, 2009

  29. Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  30. Saks S.: Sur les fonctions d’intervalle. Fundam. Math. 10, 211–224 (1927)

    MATH  Google Scholar 

  31. Solombrino F.: Quasistatic evolution problems for nonhomogeneous elastic-plastic materials. J. Convex Anal. 16, 89–119 (2009)

    MATH  MathSciNet  Google Scholar 

  32. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  33. Suquet P.: Sur les équations de la plasticité: existence et regularité des solutions. J. Mécanique 20, 3–39 (1981)

    MATH  MathSciNet  Google Scholar 

  34. Temam R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris (1985). Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983)

  35. Temam R., Strang G.: Duality and relaxation in the variational problem of plasticity. J. Mécanique 19, 493–527 (1980)

    MATH  MathSciNet  Google Scholar 

  36. Truskinovsky, L.: Quasi-static deformation of a system with nonconvex energy from a perspective of dynamics. Lecture given at the workshop “Variational Problems in Materials Science”, SISSA, Trieste, September 6–10, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Dal Maso.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal Maso, G., DeSimone, A. & Solombrino, F. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. 40, 125–181 (2011). https://doi.org/10.1007/s00526-010-0336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0336-0

Mathematics Subject Classification (2000)

Navigation