Skip to main content

Advertisement

Log in

Trends in phenology of Betula pubescens across the boreal zone in Finland

  • Review
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Timing of plant phenophases is a useful biological indicator which shows how nature responds to the variation in climate. Thus, long phenological observation series help to estimate the impact of changing climate on forest plants. We investigated whether phenological patterns of downy birch Betula pubescens respond to warming climate and whether the intensity of the responses varies among phytogeographical zones. We studied data collected by the Finnish National Phenological Network from 30 observation sites across Finland during 1997–2006. The advancement in the timing of the earliest phenophase, bud burst, ranged from 0.7 days/year in southern boreal zone to 1.4 days/year in middle and northern boreal zones. Timing of bud burst was most clearly dependent on mean May temperatures. The intensity of the response to temperature increased from south to north. The advancement of bud burst resulted into a significant lengthening of the growth period by 1.2–1.6 days per year in northern and middle boreal zones, respectively, whereas the lengthening was not significant in the southern boreal zone. No trend was observed in the timing of autumn phenophases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arctic Climate Impact Assessment (ACIA) (2005) Arctic Climate Impact Assessment. Scientific report. Cambridge University Press

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister R, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner L, Walker L, Webber P, Welker JM, Wookey PA (1999) Response patterns of tundra plant species to experimental warming: a meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Bonsal BR, Zhang X, Vincent LA, Hogg WD (2001) Characteristics of daily and extreme temperatures over Canada. J Climate 14:1959–1976

    Article  Google Scholar 

  • Braslavská O, Müller-Westermeier G, Št’astný P, Luknárová B, Tekušová M, Dittmann E, Bissolli P, Kreis A, Bruns E, Bohrendt J, Meier D, Polte-Rudolf C (2004) Evaluation of Phenological Data for Climatological Purposes. Final Report. Deutscher Wetterdienst Forschung und Entwicklung, Arbeitsergebnisse 81

  • Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric Forest Meteorol 108:101–112

    Article  Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Chang Biol 10:259–272

    Article  Google Scholar 

  • Grisule G, Malina Z (2005) Analysis of long-term phenological time-series in the territory of Latvia. 17th International Congress of Biometeorology ICB 2005. Ann Meteorol 41(2):549

    Google Scholar 

  • Häkkinen R (1999) Analysis of bud-development theories based on long-term phenological and air temperature time series: application to Betula sp. leaves. Finnish Forest Research Institute, Research Papers 754

  • Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol 18:707–712

    PubMed  Google Scholar 

  • Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions. - an ecophysiological approach on modeling of bud burst phenology. Can J Bot 73:183–199

    Article  Google Scholar 

  • Hänninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898

    PubMed  Google Scholar 

  • IPCC (2001). Climate Change 2001: The scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jylhä K, Tuomenvirta H, Ruosteenoja K (2004) Climate change projections for Finland during the 21st century. Boreal Environ Res 9:127–152

    Google Scholar 

  • Koski V (1990) Joint effects of day length and temperature on dormancy processes. Silva Carelica 15:47–50

    Google Scholar 

  • Kramer K (1995) Phenotypic plasticity of the phenology of seven European tree species in relation to warming. Plant Cell Environ 18:93–104

    Article  Google Scholar 

  • Kubin E, Kotilainen E, Poikolainen J, Hokkanen T, Nevalainen S, Pouttu A, Karhu J, Pasanen J (2007) Monitoring instructions of the Finnish National Phenological Network. Finnish Forest Research Institute

  • Kubin E, Kotilainen E, Terhivuo J, Venäläinen A (2006) Phenological observations in Finland. Memo Soc Fauna Flora Fenn 82:33–44

    Google Scholar 

  • Marchand FL, Nijs I, Heuer M, Mertens S, Kockelbergh F, Pontailler J-Y, Impens I, Beyens L (2004) Climate Warming Postpones Senescence in High Arctic Tundra. Arct Antarct Alp Res 36(4):390–394

    Article  Google Scholar 

  • Maxwell B (1992) Arctic Climate: Potential for Change under Global Warming. In: Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate. An ecophysiological perspective. Academic Press, San Diego, Calif., pp 11–34

  • Meier U (ed) (1997) BBCH-Monograph. Growth stages of mono- and dicotyledonous plants. Blackwell, Berlin

  • Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  PubMed  CAS  Google Scholar 

  • Menzel A (2002) Phenology: Its Importance to the Global Change Community. Clim Change 54(4):379–385

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Partanen J (2004) Regulation of growth onset and cessation in Norway spruce, Scots pine and Silver birch. Finnish Forest Research Institute, Research Papers 921

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce. Tree Physiol 18:811–816

    PubMed  Google Scholar 

  • Poikolainen J, Karhu J, Kubin E (1996) Development of a plant-phenological observation network in Finland. Finnish Forest Research Institute, Research Papers 623:97–101

    Google Scholar 

  • Pudas E, Tolvanen A, Poikolainen J, Sukuvaara T, Kubin E (2007) Timing of plant phenophases in Finnish Lapland in 1997–2006. Boreal Environ Res 12 (in press)

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruosteenoja K, Jylhä K, Tuomenvirta H (2005) Climate scenarios for FINADAPTstudies of climate change adaptation. FINADAPT Working Paper 15, Finnish EnvironmentInstitute Mimeographs 345, Helsinki

  • Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Commun Inst For Fenn 76:1–110

    Google Scholar 

  • Sarvas R (1974) Investigations on the annual cycle of development of forest trees II. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84.1:1–101

    Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest fundctioning in response to global warming. New Phytol 149:369–400

    Article  CAS  Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends in spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41–51

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351

    Article  Google Scholar 

  • Shutova E, Wielgolaski FE, Karles SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flø L, Høgda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51:155–166

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Kudo G (1997) Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Glob Chang Biol 3:108–115

    Article  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A Basic Finnish climate data set 1961–2000 - description and illustrations. Reports 2005:5

  • Walker MD, Ingersoll RC, Webber PJ (1995) Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecology 76:1067–1083

    Article  Google Scholar 

  • Wielgolaski FE (2001a) Vegetation sections in northern Fennoscandian mountain birch forests. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. Unesco: Man and the Biosphere Series 27:23–33

  • Wielgolaski FE (2001b) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202

    Article  PubMed  CAS  Google Scholar 

  • Wielgolaski FE, Karlsen SR (2007) Some views on plants in polar and alpine regions. Reviews in Environmental Science and Biotechnology DOI 10.1007/s11157-006-0014-z

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, Englewood Cliffs, N.J

    Google Scholar 

Download references

Acknowledgements

We thank the staff of the Finnish Forest Research Institute, the Universities of Helsinki, Joensuu, Oulu and Turku, Metsähallitus, the Game and Fisheries Research Institute and several polytechnics for carrying out the phenological observations. We are grateful to the staff of the Finnish Meteorological Institute for providing the weather data. We also thank two anonymous referees for their constructive comments about the manuscript. The study was funded by projects 3179 and 3385 at the Finnish Forest Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Tolvanen.

Appendix

Appendix

Table 4 Phenological observation sites, their locations, the mean ETS1 and the winter minimum temperatures during the period 1997–2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pudas, E., Leppälä, M., Tolvanen, A. et al. Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52, 251–259 (2008). https://doi.org/10.1007/s00484-007-0126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-007-0126-3

Keywords

Navigation