Skip to main content
Log in

A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tropical lowland forests are characterized by humid climate conditions with interannual variations in amount of precipitation, length of dry season, and relative humidity. The African tree species, Terminalia superba Engl. & Diels has a large distribution area and potentially incorporates these variations in its tree rings. Tree ring analysis was performed on 60 plantation trees (increment cores) and 41 natural trees (stem disks) from Ivory Coast and the Congolese Mayombe Forest. Natural forests and old plantations (50–55 years) showed similar growth patterns. Regional chronologies were developed for the two sample regions and showed a long-distance relationship for the period 1959–2008. Growth in the Mayombe was associated with early rainy season precipitation, but no relation was found between tree growth and precipitation in Ivory Coast. Congolese trees possibly show a higher climate-sensitivity than Ivorian trees, because precipitation in the Mayombe is more limiting, and Congolese T. superba trees are found closer to the margins of their distribution. Likewise, tree growth in the Mayombe was also influenced by the SSTs of the Gulf of Guinea and the South Atlantic Ocean during the early rainy season. However, tree growth was influenced by ENSO in both regions. In the Mayombe, La Niña years were associated with stronger tree growth whereas in Ivory Coast, El Niño years corresponded with stronger tree growth. The presented relation between ENSO, precipitation and tree growth is original for equatorial African forests, suggesting an influence of global climate variability on tree growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baillie MGL, Pilcher JR (1973) A simple program for tree-ring research. Tree Ring Bull 33:7–14

    Google Scholar 

  • Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int J Climatol 27:1335–1349

    Article  Google Scholar 

  • Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Paleogeogr Paleoclimatol Paleoecol 281:210–228

    Article  Google Scholar 

  • Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs ENSO. Int J Climatol 21:973–1005

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Couralet C (2010) Community dynamics, phenology and growth of tropical trees in the rain forest Reserve of Luki, Democratic Republic of Congo. PhD thesis, Ghent University

  • Couralet C, Sass-Klaassen U, Sterck FJ, Bekele T, Zuidema PA (2005) Combining dendrochronology and matrix modelling in demographic studies: an evaluation for Juniperus procera in Ethiopia. For Ecol Manage 216:317–330

    Article  Google Scholar 

  • Couralet C, Sterck FJ, Sass-Klaassen U, Van Acker J, Beeckman H (2010) Species-specific growth responses to climate variations in understory trees of a Central African rain forest. Biotropica 42:503–511

    Article  Google Scholar 

  • CTFT (1959) Monographie du limba (Terminalia superba Engler et Diels). CTFT, Paris

    Google Scholar 

  • CTFT (1983) Bois tropicaux (5ième edition). CTFT, Nogent-sur-Marne

    Google Scholar 

  • De Ridder M, Hubau W, Van den Bulcke J, Van Acker J, Beeckman H (2010) The potential of plantations of Terminalia superba Engl. & Diels for wood and biomass production (Mayombe Forest, Democratic Republic of Congo). Ann For Sci 67:501. doi:10.1051/forest/2010003

    Google Scholar 

  • Détienne P, Mariaux A (1970) La périodicité de formation des cernes dans le bois d’okoumé. Bois For Trop 131:37–50

    Google Scholar 

  • Détienne P, Mariaux A (1975) Nature et periodicité des cernes dans le bois de Niangon. Bois For Trop 159:29–37

    Google Scholar 

  • Détienne P, Mariaux A (1976) Nature et périodicité des cernes dans le bois de samba. Bois For Trop 169:29–35

    Google Scholar 

  • Détienne P, Mariaux A (1977) Nature et périodicité des cernes dans les bois rouges de méliacées africaines. Bois For Trop 175:52–61

    Google Scholar 

  • Devall MS, Parresol BR, Wright JS (1995) Dendroecological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in Central Panama. IAWA J 16:411–424

    Google Scholar 

  • Douglass AE (1920) Evidence of climatic effects in the annual rings of trees. Ecology 1:24–32

    Article  Google Scholar 

  • Douglass AE (1941) Crossdating in dendrochronology. J For 39:825–831

    Google Scholar 

  • Dünisch O, Montoia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250

    Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss Centralb 88:230–250

    Article  Google Scholar 

  • Eshete G, Stahl G (1999) Tree rings as indicators of growth periodicity of acacias in the Rift Valley of Ethiopia. For Ecol Manag 116:107–117

    Article  Google Scholar 

  • FAO (1986) Atlas of African agriculture. FAO, Rome

    Google Scholar 

  • FAO (2008) Digital soil map of the world. FAO, Rome

    Google Scholar 

  • Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 18:442–451

    Article  Google Scholar 

  • Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M, Kaiser KF, Orcel C, Küppers M (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1111–1122

    CAS  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188

    Article  Google Scholar 

  • Gebrekistos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate–growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 22:631–641

    Article  Google Scholar 

  • Gourlay ID (1995) The definition of seasonal growth zones in some African Acacia species—a review. IAWA J 16:353–359

    Google Scholar 

  • Groulez J, Wood PJ (1985) A monograph on Terminalia superba. Centre Technique Forestier Tropical & Commonwealth Forestry Institute, Nogent-sur-Marne

    Google Scholar 

  • Haneca K, Boeren I, Van Acker J, Beeckman H (2005) Dendrochronology in suboptimal conditions: tree rings from medieval oak from Flanders (Belgium) as dating tools and archives of past forest management. Veg Hist Archaeobot 15:137–144

    Article  Google Scholar 

  • Haneca K, Cufar K, Beeckman H (2009) Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. J Archaeol Sci 36:1–11

    Article  Google Scholar 

  • Hawthorne WD (1995) Ecological profiles of Ghanaian forest trees. Tropical forestry papers 29, University of Oxford

  • Humblet P (1946) Aménagement des forêts climatiques tropicales au Mayumbe. Bull Agric Congo Belge 37:15–87

    Google Scholar 

  • Hummel FC (1946) The formation of growth rings in Entandrophragma macrophyllum A. Chev. and Khaya grandifolia C. DC. Int For Rev 25:103–107

    Google Scholar 

  • Joly M, Voldoire A, Douville H, Terray P, Royer J-F (2007) African monsoon teleconnections with tropical SSTs: validation and evolution in a set of IPCC4 simulations. Clim Dyn 29:1–20

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011a) Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: measurement and sampling errors. J Geophys Res 116:D14103. doi:10.1029/2010JD01521

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011b) Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 2: biases and homogenisation. J Geophys Res 116:D14104. doi:10.1029/2010JD015220

    Article  Google Scholar 

  • Köppen WP, Geiger R (1930) Handbuch der Klimatologie. Verlag von Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Mariaux A (1969) La périodicité des cernes d’accroissement dans le bois de Terminalia superba. Bois For Trop 128:39–54

    Google Scholar 

  • McKnight TL, Hess D (2000) Climate zones and types: the Köppen system. Physical geography: a landscape appreciation. Prentice Hall, Upper Saddle River

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Nicholson SE, Entekhabi D (1987) Rainfall variability in equatorial and southern Africa: relationships with sea surface temperatures along the southwestern coast of Africa. J Clim Appl Meteorol 26:561–578

    Article  Google Scholar 

  • Paeth H, Friederichs P (2004) Seasonality and time scales in the relationship between global SST and African rainfall. Clim Dyn 23:815–837

    Article  Google Scholar 

  • Pumijumnong N, Eckstein D, Sass U (1995) Tree-ring research on Tectona grandis in northern Thailand. IAWA J 16:385–392

    Google Scholar 

  • Rinn F (2003) TSAP-WinTM user reference. Rinntech, Heidelberg

    Google Scholar 

  • Sass-Klaassen U, Couralet C, Sahle Y, Sterck FJ (2008) Juniper from Ethiopia contains a large-scale precipitation signal. Int J Plant Sci 169:1057–1065

    Article  Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hütterman A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob Change Biol 10:683–692

    Article  Google Scholar 

  • Schöngart J, Orthmann B, Hennenberg KJ, Porembski S, Worbes M (2006) Climate–growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Glob Change Biol 12:1139–1150

    Article  Google Scholar 

  • Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J 20:249–253

    Google Scholar 

  • Stahle DW, Mushove PT, Cleaveland MK, Roig F, Haynes GA (1999) Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. For Ecol Manag 124:217–229

    Article  Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86

    Article  Google Scholar 

  • Tarhule A, Hughes MK (2002) Tree-ring research in semi-arid West Africa: need and potential. Tree Ring Res 58:31–46

    Google Scholar 

  • Therrell MD, Stahle DW, Ries LP, Shugart HH (2006) Tree-ring reconstructed rainfall variability in Zimbabwe. Clim Dyn 26:677–685

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Article  Google Scholar 

  • Trouet V, Haneca K, Coppin P, Beeckman H (2001) Tree ring analysis of Brachystegia spiciformis and Isoberlinia tomentosa: evaluation of the ENSO-signal in the miombo-woodland of eastern Africa. IAWA J 22:385–399

    Article  Google Scholar 

  • Trouet V, Coppin P, Beeckman H (2006) Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38:375–382

    Article  Google Scholar 

  • Trouet V, Esper J, Beeckman H (2010) Climate/growth relationships of Brachystegia spiciformis from the miombo woodland in south central Africa. Dendrochronologia 28:161–171

    Article  Google Scholar 

  • van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701

    Article  Google Scholar 

  • White F (1983) The vegetation of Africa. UNESCO, Switzerland

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with application in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wils THG, Sass-Klaassen U, Eshetu Z, Braüning A, Gebrekirstos A, Couralet C, Robertson I, Touchan R, Koprowski M, Conway D, Briffa K, Beeckman H (2011) Dendrochronology in the dry tropics: the Ethiopian case. Trees 25:345–354

    Article  Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees. A review. IAWA J 16:337–351

    Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics - A brief history and an outlook on future challenges. Dendrochronologia 20:217–231

    Article  Google Scholar 

  • Worbes M, Staschel R, Roloff A, Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manage 173:105–123

    Article  Google Scholar 

  • Trouet V, Van Oldenborgh GJ (2013) KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree Ring Res 69:3–13

    Google Scholar 

Download references

Acknowledgments

This research project is funded by a PhD grant (M. De Ridder) of the Flemish Interuniversity Council (VLIR). The fieldwork in Ivory Coast was supported by a grant from the King Leopold III Fund for Nature Exploration and Conservation and the Congolese fieldwork was possible with the help of a grant from VLIR. We are indebted to the Special Research Fund of Ghent University for financing the PhD project of W. Hubau. We would also like to thank the teams of WWF DRC, WWF Belgium, Soforma, the ERAIFT (École Régionale post-universitaire d’Aménagement et de gestion Intégrés des Forêts et Territoires tropicaux), Thanry and Bomaco for their financial support and their guidance throughout the fieldwork. Special thanks goes out to Guy Bayens for all possible help on organizing the Ivory Coast fieldwork and to Laurent Nsenga, Geert Lejeune, Bruno Pérodeau and Prof. Shango Mutambwe, whose efforts were indispensable for the success of the field campaigns in the DRC. Also a warm thank you to the local crew who guided us through the forests of West and Central Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maaike De Ridder.

Additional information

Communicated by M. Buckeridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ridder, M., Trouet, V., Van den Bulcke, J. et al. A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa. Trees 27, 1225–1238 (2013). https://doi.org/10.1007/s00468-013-0871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0871-3

Keywords

Navigation