Skip to main content
Log in

Effects of groundwater depth variation on photosynthesis and photoprotection of Elaeagnus angustifolia L.

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Physiological and photosynthetic responses were investigated at three different depths of groundwater (DGW: 1.4, 2.4, and 3.4 m) in Elaeagnus angustifolia L., a locally adapted tree to the arid region in northwest China. Predawn leaf water potential and chlorophyll content declined gradually with the increasing DGW, whereas there was little effect on predawn variable-to-maximum chlorophyll fluorescence ratio F v/F m and leaf carotenoid compositions (xanthophyll cycle pool, neoxanthin, lutein, and β-carotene). Net photosynthetic rate (P n), quantum yield of PSII electron transport (ΦPSII), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) declined obviously; however, P n decreased more than ΦPSII at deeper DGW. The photoinhibition of PSII at all three DGW occurred at midday in summer and increased as DGW increased. The ΔpH-dependent thermal dissipation and the level of de-epoxidation of the xanthophyll cycle at all three DGW reached their maxima at midday with the increase of light intensity. However, the fraction of functional PSII and light intensity at deeper DGW (2.4, 3.4 m) showed a negative correlation. This correlation suggested that most of violaxanthin was converted into zeaxanthin at midday, and the reversible inactivation of partial PSII reaction centers took place at deeper DGW. These results together suggest that both the xanthophyll cycle-dependent thermal dissipation and the reversible inactivation of partial PSII might have played important roles in avoiding the excess light-induced energy damage in leaves of this tree species at deeper DGW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams WW III, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186:390–398

    Article  CAS  Google Scholar 

  • Anderson JM, Park Y-I, Chow WS (1997) Photoinactivation and photoprotection of photosystem II in nature. Physiol Plant 100:214–223

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidases in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Cai SQ, Xu DQ (2002) Light intensity-dependent reversible down-regulation and irreversible damage of PSII in soybean leaves. Plant Sci 163:847–853

    Article  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricarda CPP, Osorio ML, Carvalho I, Faria T, Pinheriro C (2002) How plants cope with water stress in the field: photosynthesis and growth. Ann Bot 89:907–916

    Article  PubMed  CAS  Google Scholar 

  • Chow WS (1994) Photoprotection and photoinhibition damage. Adv Mol Cell Biol 10:151–196

    CAS  Google Scholar 

  • Chow WS, Lee HY, Park YI, Park YM, Hong YN, Anderson JM (2002) The role of inactive photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivo. Philos Trans R Soc Lond B Biol Sci 357:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Critchley C, Russell AW (1994) Photoinhibition of photosynthesis in vivo: the role of protein turnover in photosystem II. Physiol Plant 92:188–196

    Article  CAS  Google Scholar 

  • Dejana Pankovic, Zvonimir Sakac, Slavko Kevresan, Marijana Plesnicar (1999) Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J Exp Bot 50:127–138

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996a) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996b) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Winter K, Kruger A, Czygan FC (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87:17–24

    Article  Google Scholar 

  • E YH, Yan P, Zhong SL, Han FG(1997) Study on the underground water variation of Shajingzi region in Minqin county. J Desert Res 17:70–76

    Google Scholar 

  • Epron D (1997) Effects of drought on photosynthesis and on the thermotolerance of photsystem II in seedings of cedar (Cedrus atlantica and C. libani). J Exp Bot 38:1835–1841

    Article  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1999) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust J Plant Physiol 25:893–900

    Google Scholar 

  • Flexas J, Luke H, Chow WS (2001) Photoinactivation of photosystem II in high light-acclimated grapevines. Aust J Plant Physiol 28: 755–764

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a nonendcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J Chromatogr 543:137–145

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching: evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78

    Article  CAS  Google Scholar 

  • Govindjee (1990) Photosystem II heterogeneity: the acceptor side. Photosynth Res 25:151–160

    Article  CAS  Google Scholar 

  • Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003) Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ 26:725–736

    Article  Google Scholar 

  • Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Cambridge University Press, London, pp 178–185

    Google Scholar 

  • Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55

    Article  CAS  Google Scholar 

  • He J, Chow WS (2003) The rate coefficient of repair of photosystem II after photoinactivation. Physiol Plant 118:297–304

    Article  CAS  Google Scholar 

  • Hong SS, Xu DQ (1999a) Reversible inactivation of PSII reaction centers and the dissociation of LHCII from PSII complex in soybean leaves. Plant Sci 147:111–118

    Article  CAS  Google Scholar 

  • Hong SS, Xu DQ (1999b) Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PSII reaction centers in soybean leaves. Photosynth Res 61:269–280

    Article  CAS  Google Scholar 

  • Horton JL, Thomas EK, Stephen C Hart (2001a) Physiological response to groundwater depth varies among species and with river flow regulation. Ecol Appl 11:1046–1059

    Google Scholar 

  • Horton JL, Thomas EK, Stephen C Hart (2001b) Responses of riparian trees to interannual variation in grounder water depth in a semi-arid river basin. Plant Cell Environ 24:293–304

    Article  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants form photooxidation. Nature 384:577–560

    Article  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damage and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Grube E, Koroleva OY, Barth C, Winter K (2004) Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation? Funct Plant Biol 31:43–756

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Lee HY, Chow WS, Hong YN (1999) Photoinactivation of photosystem II in leaves of Capsicum annuum. Physiol Plant 105:377–384

    Article  CAS  Google Scholar 

  • Lee HY, Hong YN, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. Planta 212:332–342

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Hong YN, Chow WS (2002) Putative effects of pH in intra-chloroplast compartments on photoprotection of functional photosystem II complexes by photoinactivated neighbours and on recovery from photoinactivation in Capsicum annuum leaves. Funct Plant Biol 29:607–619

    Article  CAS  Google Scholar 

  • Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  PubMed  CAS  Google Scholar 

  • Liu SR, Zhao GD, Ma QL (2003) Ecophysiological responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area: II. Leaf photosynthesis and photosynthetic response to light and temperature. Acta Phytoeco Sin 27:223–227

    Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Lu CM, Zhang JH (1999) Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust J Plant Physiol 25:883–892

    Article  Google Scholar 

  • Ma YZ, Nancy EH, Li XP, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    Article  PubMed  CAS  Google Scholar 

  • Mäenpää P, Andersson B, Sundby C (1987) Difference in the sensitivity to photoinhibition between photosystem II in the appressed and non-appressed thylakoid regions. FEBS Lett 215:31–36

    Article  Google Scholar 

  • Matsubara S, Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101:18234–18239

    Article  PubMed  CAS  Google Scholar 

  • Medrano H, Bota J, Abadía A., Sampol B., Escalona JM, Jaume F (2002) Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Funct Plant Biol 29:1197–1207

    Article  CAS  Google Scholar 

  • Melis A (1985) Functional properties of photosystem II in spinach chloroplasts. Biochim Biophys Acta 808:334–342

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  PubMed  CAS  Google Scholar 

  • Öquist G, Chow WS, Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 186:450–460

    Article  Google Scholar 

  • Park YI, Anderson JM, Chow WS (1996) Photoinactivation of photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta 198:300–309

    Article  CAS  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1995) Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196:401–411

    Article  CAS  Google Scholar 

  • Ruban AV, Paecal A, Lee JP, Robert B, Horton P (2002) Molecular configuration of xanthophylls cycle carotenoids in photosystem II anternna complexes. J Biol Chem 277:42937–42942

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Rodriguez J, Martinez-Carrasco R, Perez P (1997) Photosynthetic electron transport and carbon-reduction-cycle enzyme activites under long-term drought stress in Casuarina equisetifolia Forst. & Forst. Photosynth Res 52:255–262

    Article  CAS  Google Scholar 

  • Smith SD, Devitt DA, Sala A, Cleverly JA, Busch DE (1998) Water relation of riparian plants from warm desert regions. Wetlands 18:687–696

    Article  Google Scholar 

  • Walters RG, Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PSII fluorescence in barley leaves. Photosynth Res 36: 119–139

    Article  CAS  Google Scholar 

  • Wang JH (1993) The geographical distribution and prospects for utilization of Russianolive. Bulletin Gansu Desert Control Res Inst 8:32–38

    CAS  Google Scholar 

  • Xu DQ (2001) Progress in photosynthesis research: from molecular mechanism to Green Revolution. Acta Phytophysiol Sin 27:97–108

    CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57–64

    Article  CAS  Google Scholar 

  • Zhao CM, Wang GX (2002) Effects of drought stress on the photoprotection in Ammopiptanthus mongolicus leaves. Acta Bot Sin 44:1309–1313

    CAS  Google Scholar 

  • Zhao GD, Liu SR, Ma QL (2003) Ecophysiological responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area: I. Changes in leaf nutrient, chlorophyll, soluble sugar and starch contents. Acta Phytoeco Sin 27:228–234

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Liu J.-Q. and Dr. Yang H.-M. for helping to improve the language. The study was supported by National Natural Science Foundation of China (30430560, 30170161, and 90102015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ming Zhao.

Additional information

Communicated by U. Lüttge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, CM., Wang, GX., Wei, XP. et al. Effects of groundwater depth variation on photosynthesis and photoprotection of Elaeagnus angustifolia L.. Trees 21, 55–63 (2007). https://doi.org/10.1007/s00468-006-0096-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-006-0096-9

Keywords

Navigation