Skip to main content

Advertisement

Log in

New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Hyponatremia is the most common electrolyte abnormality encountered in children. In the past decade, new advances have been made in understanding the pathogenesis of hyponatremic encephalopathy and in its prevention and treatment. Recent data have determined that hyponatremia is a more serious condition than previously believed. It is a major comorbidity factor for a variety of illnesses, and subtle neurological findings are common. It has now become apparent that the majority of hospital-acquired hyponatremia in children is iatrogenic and due in large part to the administration of hypotonic fluids to patients with elevated arginine vasopressin levels. Recent prospective studies have demonstrated that administration of 0.9% sodium chloride in maintenance fluids can prevent the development of hyponatremia. Risk factors, such as hypoxia and central nervous system (CNS) involvement, have been identified for the development of hyponatremic encephalopathy, which can lead to neurologic injury at mildly hyponatremic values. It has also become apparent that both children and adult patients are dying from symptomatic hyponatremia due to inadequate therapy. We have proposed the use of intermittent intravenous bolus therapy with 3% sodium chloride, 2 cc/kg with a maximum of 100 cc, to rapidly reverse CNS symptoms and at the same time avoid the possibility of overcorrection of hyponatremia. In this review, we discuss how to recognize patients at risk for inadvertent overcorrection of hyponatremia and what measures should taken to prevent this, including the judicious use of 1-desamino-8d-arginine vasopressin (dDAVP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Barlow ED, De Wardener HE (1959) Compulsive water drinking. Q J Med 28:235–258

    CAS  PubMed  Google Scholar 

  2. Oksche A, Rosenthal W (1998) The molecular basis of nephrogenic diabetes insipidus. J Mol Med 76:326–337

    Article  CAS  PubMed  Google Scholar 

  3. Dunn FL, Brennan TJ, Nelson AE, Robertson GL (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52:3212–3219

    Article  CAS  PubMed  Google Scholar 

  4. Moritz ML (2008) Urine sodium composition in ambulatory healthy children: hypotonic or isotonic? Pediatr Nephrol 23:955–957

    Article  PubMed  Google Scholar 

  5. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, Kapoor WN (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336:243–250

    Article  CAS  PubMed  Google Scholar 

  6. Gheorghiade M, Abraham WT, Albert NM, Gattis Stough W, Greenberg BH, O'Connor CM, She L, Yancy CW, Young J, Fonarow GC (2007) Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. Eur Heart J 28:980–988

    Article  CAS  PubMed  Google Scholar 

  7. Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, Edwards E, Therneau TM (2008) Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med 359:1018–1026

    Article  CAS  PubMed  Google Scholar 

  8. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G (2006) Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 119:e71–e78

    Article  CAS  Google Scholar 

  9. Ayus JC, Arieff AI (1999) Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA 281:2299–2304

    Article  CAS  PubMed  Google Scholar 

  10. Gankam Kengne F, Andres C, Sattar L, Melot C, Decaux G (2008) Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM 101:583–588

    Article  CAS  PubMed  Google Scholar 

  11. Al-Dahhan J, Haycock GB, Nichol B, Chantler C, Stimmler L (1984) Sodium homeostasis in term and preterm neonates. III. Effect of salt supplementation. Arch Dis Child 59:945–950

    Article  CAS  PubMed  Google Scholar 

  12. Al-Dahhan J, Jannoun L, Haycock GB (2002) Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10–13 years of age. Arch Dis Child Fetal Neonatal Ed 86:F120–F123

    Article  CAS  PubMed  Google Scholar 

  13. Shirazki A, Weintraub Z, Reich D, Gershon E, Leshem M (2007) Lowest neonatal serum sodium predicts sodium intake in low birth weight children. Am J Physiol Regul Integr Comp Physiol 292:R1683–R1689

    CAS  PubMed  Google Scholar 

  14. Ertl T, Hadzsiev K, Vincze O, Pytel J, Szabo I, Sulyok E (2001) Hyponatremia and sensorineural hearing loss in preterm infants. Biol Neonate 79:109–112

    Article  CAS  PubMed  Google Scholar 

  15. Murphy DJ, Hope PL, Johnson A (1997) Neonatal risk factors for cerebral palsy in very preterm babies: case-control study. BMJ 314:404–408

    CAS  PubMed  Google Scholar 

  16. Li YF, Lu GJ, Han YK (2007) Risk factors for intracranial hemorrhage in very low birth weight infants. Zhongguo Dang Dai Er Ke Za Zhi 9:297–300

    PubMed  Google Scholar 

  17. Mir NA, Faquih AM, Legnain M (1989) Perinatal risk factors in birth asphyxia: relationship of obstetric and neonatal complications to neonatal mortality in 16, 365 consecutive live births. Asia Oceania J Obstet Gynaecol 15:351–357

    CAS  PubMed  Google Scholar 

  18. Ayus JC, Achinger SG, Arieff A (2008) Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia. Am J Physiol Renal Physiol 295:F619–F624

    Article  CAS  PubMed  Google Scholar 

  19. Moritz ML, Ayus JC (2003) The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephrol Dial Transplant 18:2486–2491

    Article  PubMed  Google Scholar 

  20. Moritz ML, Ayus JC (2005) Preventing neurological complications from dysnatremias in children. Pediatr Nephrol 20:1687–1700

    Article  PubMed  Google Scholar 

  21. Kimelberg HK (2004) Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 45:511–519

    Article  CAS  PubMed  Google Scholar 

  22. Schoonman GG, Sandor PS, Nirkko AC, Lange T, Jaermann T, Dydak U, Kremer C, Ferrari MD, Boesiger P, Baumgartner RW (2008) Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J Cereb Blood Flow Metab 28:198–206

    Article  CAS  PubMed  Google Scholar 

  23. Sundgren PC, Reinstrup P, Romner B, Holtas S, Maly P (2002) Value of conventional, and diffusion- and perfusion weighted MRI in the management of patients with unclear cerebral pathology, admitted to the intensive care unit. Neuroradiology 44:674–680

    Article  CAS  PubMed  Google Scholar 

  24. Kalantar-Zadeh K, Nguyen MK, Chang R, Kurtz I (2006) Fatal hyponatremia in a young woman after ecstasy ingestion. Nat Clin Pract Nephrol 2:283–288, quiz 289

    Article  PubMed  Google Scholar 

  25. Campbell GA, Rosner MH (2008) The agony of ecstasy: MDMA (3, 4-methylenedioxymethamphetamine) and the kidney. Clin J Am Soc Nephrol 3:1852–1860

    Article  CAS  PubMed  Google Scholar 

  26. McClellan MD, Dauber IM, Weil JV (1989) Elevated intracranial pressure increases pulmonary vascular permeability to protein. J Appl Physiol 67:1185–1191

    CAS  PubMed  Google Scholar 

  27. Moritz ML, Ayus JC (2008) Exercise-associated hyponatremia: why are athletes still dying? Clin J Sport Med 18:379–381

    Article  PubMed  Google Scholar 

  28. Smith WS, Matthay MA (1997) Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest 111:1326–1333

    Article  CAS  PubMed  Google Scholar 

  29. Ayus JC, Arieff AI (1995) Pulmonary complications of hyponatremic encephalopathy. Noncardiogenic pulmonary edema and hypercapnic respiratory failure. Chest 107:517–521

    Article  CAS  PubMed  Google Scholar 

  30. Ayus JC, Varon J, Arieff AI (2000) Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med 132:711–714

    CAS  PubMed  Google Scholar 

  31. Sarnaik AP, Meert K, Hackbarth R, Fleischmann L (1991) Management of hyponatremic seizures in children with hypertonic saline: a safe and effective strategy. Crit Care Med 19:758–762

    Article  CAS  PubMed  Google Scholar 

  32. Bruce RC, Kliegman RM (1997) Hyponatremic seizures secondary to oral water intoxication in infancy: association with commercial bottled drinking water. Pediatrics 100:E4

    Article  CAS  PubMed  Google Scholar 

  33. Ayus JC, Wheeler JM, Arieff AI (1992) Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 117:891–897

    CAS  PubMed  Google Scholar 

  34. Arieff AI, Ayus JC, Fraser CL (1992) Hyponatraemia and death or permanent brain damage in healthy children. BMJ 304:1218–1222

    Article  CAS  PubMed  Google Scholar 

  35. Arieff AI, Kozniewska E, Roberts TP, Vexler ZS, Ayus JC, Kucharczyk J (1995) Age, gender, and vasopressin affect survival and brain adaptation in rats with metabolic encephalopathy. Am J Physiol 268:R1143–R1152

    CAS  PubMed  Google Scholar 

  36. Sgouros S, Goldin JH, Hockley AD, Wake MJ, Natarajan K (1999) Intracranial volume change in childhood. J Neurosurg 91:610–616

    Article  CAS  PubMed  Google Scholar 

  37. Xenos C, Sgouros S, Natarajan K (2002) Ventricular volume change in childhood. J Neurosurg 97:584–590

    Article  PubMed  Google Scholar 

  38. Farrar HC, Chande VT, Fitzpatrick DF, Shema SJ (1995) Hyponatremia as the cause of seizures in infants: a retrospective analysis of incidence, severity, and clinical predictors. Ann Emerg Med 26:42–48

    Article  CAS  PubMed  Google Scholar 

  39. Vajda Z, Pedersen M, Doczi T, Sulyok E, Stodkilde-Jorgensen H, Frokiaer J, Nielsen S (2001) Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery 49:697–704, discussion 704–705

    Article  CAS  PubMed  Google Scholar 

  40. Doczi T, Laszlo FA, Szerdahelyi P, Joo F (1984) Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery 14:436–441

    CAS  PubMed  Google Scholar 

  41. Kozniewska E, Gadamski R, Klapczynska K, Wojda R, Rafalowska J (2008) Morphological changes in the brain during experimental hyponatraemia. Do vasopressin and gender matter? Folia Neuropathol 46:271–277

    PubMed  Google Scholar 

  42. Arieff AI (1986) Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med 314:1529–1535

    CAS  PubMed  Google Scholar 

  43. Vexler ZS, Ayus JC, Roberts TP, Fraser CL, Kucharczyk J, Arieff AI (1994) Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest 93:256–264

    Article  CAS  PubMed  Google Scholar 

  44. Ayus JC, Armstrong D, Arieff AI (2006) Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int 69:1319–1325

    CAS  PubMed  Google Scholar 

  45. Moritz ML, Carlos Ayus J (2007) Hospital-acquired hyponatremia–why are hypotonic parenteral fluids still being used? Nat Clin Pract Nephrol 3:374–382

    Article  CAS  PubMed  Google Scholar 

  46. McJunkin JE, de los Reyes EC, Irazuzta JE, Caceres MJ, Khan RR, Minnich LL, Fu KD, Lovett GD, Tsai T, Thompson A (2001) La Crosse encephalitis in children. N Engl J Med 344:801–807

    Article  CAS  PubMed  Google Scholar 

  47. Moritz ML, Ayus JC (2001) La Crosse encephalitis in children. N Engl J Med 345:148–149

    Article  CAS  PubMed  Google Scholar 

  48. Moritz ML, Ayus JC (2006) Case 8–2006: a woman with Crohn's disease and altered mental status. N Engl J Med 354:2833–2834

    Article  CAS  PubMed  Google Scholar 

  49. Papadopoulos MC, Krishna S, Verkman AS (2002) Aquaporin water channels and brain edema. Mt Sinai J Med 69:242–248

    PubMed  Google Scholar 

  50. Al-Zahraa Omar F, Al Bunyan M (1997) Severe hyponatremia as poor prognostic factor in childhood neurologic diseases. J Neurol Sci 151:213–216

    Article  CAS  PubMed  Google Scholar 

  51. Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J (2007) Hyponatremia in patients with traumatic brain injury: incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol 68:387–393

    Article  PubMed  Google Scholar 

  52. Chao YN, Chiu NC, Huang FY (2008) Clinical features and prognostic factors in childhood pneumococcal meningitis. J Microbiol Immunol Infect 41:48–53

    Google Scholar 

  53. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI (2002) Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics 109:999–1008

    Article  PubMed  Google Scholar 

  54. Glaser NS, Wootton-Gorges SL, Marcin JP, Buonocore MH, Dicarlo J, Neely EK, Barnes P, Bottomly J, Kuppermann N (2004) Mechanism of cerebral edema in children with diabetic ketoacidosis. J Pediatr 145:164–171

    Article  PubMed  Google Scholar 

  55. Glaser N, Barnett P, McCaslin I, Nelson D, Trainor J, Louie J, Kaufman F, Quayle K, Roback M, Malley R, Kuppermann N (2001) Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 344:264–269

    Article  CAS  PubMed  Google Scholar 

  56. Hoorn EJ, Carlotti AP, Costa LA, MacMahon B, Bohn G, Zietse R, Halperin ML, Bohn D (2007) Preventing a drop in effective plasma osmolality to minimize the likelihood of cerebral edema during treatment of children with diabetic ketoacidosis. J Pediatr 150:467–473

    Article  CAS  PubMed  Google Scholar 

  57. Moritz ML, Ayus JC (2003) Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics 111:227–230

    Article  PubMed  Google Scholar 

  58. Au AK, Ray PE, McBryde KD, Newman KD, Weinstein SL, Bell MJ (2008) Incidence of postoperative hyponatremia and complications in critically-ill children treated with hypotonic and normotonic solutions. J Pediatr 152:33–38

    Article  CAS  PubMed  Google Scholar 

  59. Holliday MA, Segar WE, Friedman A (2003) Reducing errors in fluid therapy. Pediatrics 111:424–425

    PubMed  Google Scholar 

  60. Agut Fuster MA, del Campo Biosca J, Ferrer Rodriguez A, Ramos Martinez MJ, Viel Martinez JM, Agulles Fornes MJ (2006) Post-tonsillectomy hyponatremia: a posible lethal complication. Acta Otorrinolaringol Esp 57:247–250

    CAS  PubMed  Google Scholar 

  61. Duke T, Kinney S, Waters K (2005) Hyponatraemia and seizures in oncology patients associated with hypotonic intravenous fluids. J Paediatr Child Health 41:685–686

    Article  Google Scholar 

  62. Osier FH, Berkley JA, Newton CR (2006) Life-threatening hyponatraemia and neurotoxicity during chemotherapy for Burkitt's lymphoma. Trop Doct 36:177–178

    Article  CAS  PubMed  Google Scholar 

  63. Donaldson MD, Morrison C, Lees C, McNeill E, Howatson AG, Paton JY, McWilliam R (2007) Fatal and near-fatal encephalopathy with hyponatraemia in two siblings with fluticasone-induced adrenal suppression. Acta Paediatr 96:769–772

    Article  CAS  PubMed  Google Scholar 

  64. Ashraf A, Albert A (2006) Bronchiolitis with hyponatremia. Clin Pediatr (Phila) 45:101–102

    Article  Google Scholar 

  65. Auroy Y, Benhamou D, Pequignot F, Jougla E, Lienhart A (2008) Hyponatraemia-related death after paediatric surgery still exists in France. Br J Anaesth 101:741

    Article  CAS  PubMed  Google Scholar 

  66. Moritz ML, Ayus JC (2008) 0.9% saline solution for the prevention of hospital-acquired hyponatremia: why is there still doubt? J Pediatr 153:444; author reply 444–446; discussion 446–447

    PubMed  Google Scholar 

  67. Kinney S, Tibballs J, Johnston L, Duke T (2008) Clinical profile of hospitalized children provided with urgent assistance from a medical emergency team. Pediatrics 121:e1577–e1584

    Article  PubMed  Google Scholar 

  68. Way C, Dhamrait R, Wade A, Walker I (2006) Perioperative fluid therapy in children: a survey of current prescribing practice. Br J Anaesth 97:371–379

    Article  CAS  PubMed  Google Scholar 

  69. Snaith R, Peutrell J, Ellis D (2008) An audit of intravenous fluid prescribing and plasma electrolyte monitoring; a comparison with guidelines from the National Patient Safety Agency. Paediatr Anaesth 18:940–946

    Article  PubMed  Google Scholar 

  70. Davies P, Hall T, Ali T, Lakhoo K (2008) Intravenous postoperative fluid prescriptions for children: a survey of practice. BMC Surg 8:10

    Article  PubMed  Google Scholar 

  71. National Patient Safety Agency (2007) Reducing the risk of hyponatraemia when administering intravenous infusions to children. Available at http://www.nrls.npsa.nhs.uk/resources

  72. Yung M, Keeley S (2009) Randomised controlled trial of intravenous maintenance fluids. J Paediatr Child Health 45:9–14

    Article  PubMed  Google Scholar 

  73. Montanana PA, Modesto i Alapont V, Ocon AP, Lopez PO, Lopez Prats JL, Toledo Parreno JD (2008) The use of isotonic fluid as maintenance therapy prevents iatrogenic hyponatremia in pediatrics: a randomized, controlled open study. Pediatr Crit Care Med 9:589–597

    Article  PubMed  Google Scholar 

  74. Ayus JC, Krothapalli RK, Arieff AI (1987) Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective study. N Engl J Med 317:1190–1195

    Article  CAS  PubMed  Google Scholar 

  75. Hoorn EJ, Lindemans J, Zietse R (2006) Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant 21:70–76

    Article  PubMed  Google Scholar 

  76. Huda MS, Boyd A, Skagen K, Wile D, van Heyningen C, Watson I, Wong S, Gill G (2006) Investigation and management of severe hyponatraemia in a hospital setting. Postgrad Med J 82:216–219

    Article  CAS  PubMed  Google Scholar 

  77. Nzerue C, Baffoe-Bonnie H, Dail C (2002) Predicters of mortality with severe hyponatremia. J Am Soc Nephrol 13:A0728

    Google Scholar 

  78. Mohmand HK, Issa D, Ahmad Z, Cappuccio JD, Kouides RW, Sterns RH (2007) Hypertonic saline for hyponatremia: risk of inadvertent overcorrection. Clin J Am Soc Nephrol 2:1110–1117

    Article  PubMed  Google Scholar 

  79. Decaux G, Soupart A, Vassart G (2008) Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet 371:1624–1632

    Article  CAS  PubMed  Google Scholar 

  80. Ayus JC, Arieff A, Moritz ML (2005) Hyponatremia in marathon runners. N Engl J Med 353:427–428

    Article  CAS  PubMed  Google Scholar 

  81. Hew-Butler T, Ayus JC, Kipps C, Maughan RJ, Mettler S, Meeuwisse WH, Page AJ, Reid SA, Rehrer NJ, Roberts WO, Rogers IR, Rosner MH, Siegel AJ, Speedy DB, Stuempfle KJ, Verbalis JG, Weschler LB, Wharam P (2008) Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clin J Sport Med 18:111–121

    Article  PubMed  Google Scholar 

  82. Sterns RH, Nigwekar SU, Hix JK (2009) The treatment of hyponatremia. Semin Nephrol 29:282–299

    Article  CAS  PubMed  Google Scholar 

  83. Palmer BF, Sterns RH (2009) Fluid, electrolytes and acid-base disturbances. Nephrol Self Assess Program 8:136–142

    Google Scholar 

  84. Decaux G, Soupart A (2003) Treatment of symptomatic hyponatremia. Am J Med Sci 326:25–30

    Article  PubMed  Google Scholar 

  85. Lauriat SM, Berl T (1997) The hyponatremic patient: practical focus on therapy. J Am Soc Nephrol 8:1599–1607

    CAS  PubMed  Google Scholar 

  86. Tan H, Onbas O (2004) Central pontine myelinolysis central pontine myelinolysis manifesting with massive myoclonus. Pediatr Neurol 31:64–66

    Article  PubMed  Google Scholar 

  87. Hagiwara K, Okada Y, Shida N, Yamashita Y (2008) Extensive central and extrapontine myelinolysis in a case of chronic alcoholism without hyponatremia: a case report with analysis of serial MR findings. Intern Med (Tokyo, Japan) 47:431–435

    Google Scholar 

  88. Schuster M, Diekmann S, Klingebiel R, Volk T (2009) Central pontine myelinolysis despite slow sodium rise in a case of severe community-acquired hyponatraemia. Anaesth Intensive Care 37:117–120

    CAS  PubMed  Google Scholar 

  89. Orakzai RH, Orakzai SH, Hasley PB (2008) Treating hyponatremia: how slow is safe? Central pontine myelinolysis despite appropriate correction of hyponatremia. Eur J Intern Med 19:e29–e31

    Article  PubMed  Google Scholar 

  90. Yoon B, Shim YS, Chung SW (2008) Central pontine and extrapontine myelinolysis after alcohol withdrawal. Alcohol Alcohol 43:647–649

    CAS  PubMed  Google Scholar 

  91. Germiniani FM, Roriz M, Nabhan SK, Teive HA, Werneck LC (2002) Central pontine and extra-pontine myelinolysis in an alcoholic patient without hydro-electrolyte disturbances: case report. Arq Neuropsiquiatr 60:1030–1033

    PubMed  Google Scholar 

  92. Nagaishi A, Yukitake M, Eriguchi M, Kuroda Y (2007) A case of alcoholic with vitamin B12 deficiency presenting central pontine and extrapontine myelinolysis on MRI. Rinsho shinkeigaku 47:173–176

    PubMed  Google Scholar 

  93. Georgy V, Mullhi D, Jones AF (2007) Central pontine myelinolysis following 'optimal' rate of correction of hyponatraemia with a good clinical outcome. Ann Clin Biochem 44:488–490

    Article  CAS  PubMed  Google Scholar 

  94. Savasta S, Sepe V, Scagnelli P, Cisternino M, Libetta C, Soccio G, Marchi MA (2006) Severe hyponatremia followed by extrapontine myelinolysis. Kidney Int 69:423

    Article  CAS  PubMed  Google Scholar 

  95. Dellabarca C, Servilla KS, Hart B, Murata GH, Tzamaloukas AH (2005) Osmotic myelinolysis following chronic hyponatremia corrected at an overall rate consistent with current recommendations. Int Urol Nephrol 37:171–173

    Article  PubMed  Google Scholar 

  96. Pradhan S, Jha R, Singh MN, Gupta S, Phadke RV, Kher V (1995) Central pontine myelinolysis following 'slow' correction of hyponatremia. Clin Neurol Neurosurg 97:340–343

    Article  CAS  PubMed  Google Scholar 

  97. Alam NH, Yunus M, Faruque AS, Gyr N, Sattar S, Parvin S, Ahmed JU, Salam MA, Sack DA (2006) Symptomatic hyponatremia during treatment of dehydrating diarrheal disease with reduced osmolarity oral rehydration solution. JAMA 296:567–573

    Article  CAS  PubMed  Google Scholar 

  98. Keating JP, Schears GJ, Dodge PR (1991) Oral water intoxication in infants. An American epidemic. Am J Dis Child 145:985–990

    CAS  PubMed  Google Scholar 

  99. Moritz ML (2007) Fluid replacement for severe hyponatremia. JAMA 297:41–42

    Article  CAS  PubMed  Google Scholar 

  100. Sasaki S (2004) Nephrogenic diabetes insipidus: update of genetic and clinical aspects. Nephrol Dial Transplant 19:1351–1353

    Article  PubMed  Google Scholar 

  101. Ho VB, Fitz CR, Yoder CC, Geyer CA (1993) Resolving MR features in osmotic myelinolysis (central pontine and extrapontine myelinolysis). AJNR Am J Neuroradiol 14:163–167

    CAS  PubMed  Google Scholar 

  102. Wright DG, Laureno R, Victor M (1979) Pontine and extrapontine myelinolysis. Brain 102:361–385

    Article  CAS  PubMed  Google Scholar 

  103. Kumar SR, Mone AP, Gray LC, Troost BT (2000) Central pontine myelinolysis: delayed changes on neuroimaging. J Neuroimaging 10:169–172

    CAS  PubMed  Google Scholar 

  104. Adler S, Verbalis JG, Williams D (1995) Effect of rapid correction of hyponatremia on the blood-brain barrier of rats. Brain Res 679:135–143

    Article  CAS  PubMed  Google Scholar 

  105. Ayus JC, Armstrong DL, Arieff AI (1996) Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J Physiol 492:243–255

    CAS  PubMed  Google Scholar 

  106. Ayus JC, Krothapalli RK, Armstrong DL (1985) Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am J Physiol 248:F711–F719

    CAS  PubMed  Google Scholar 

  107. Ayus JC, Krothapalli RK, Armstrong DL, Norton HJ (1989) Symptomatic hyponatremia in rats: effect of treatment on mortality and brain lesions. Am J Physiol 257:F18–F22

    CAS  PubMed  Google Scholar 

  108. Baker EA, Tian Y, Adler S, Verbalis JG (2000) Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol 165:221–230

    Article  CAS  PubMed  Google Scholar 

  109. Kleinschmidt-DeMasters BK, Norenberg MD (1981) Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 211:1068–1070

    Article  CAS  PubMed  Google Scholar 

  110. Adler S, Verbalis JG, Meyers S, Simplaceanu E, Williams DS (2000) Changes in cerebral blood flow and distribution associated with acute increases in plasma sodium and osmolality of chronic hyponatremic rats. Exp Neurol 163:63–71

    Article  CAS  PubMed  Google Scholar 

  111. Soupart A, Penninckx R, Stenuit A, Perier O, Decaux G (1992) Treatment of chronic hyponatremia in rats by intravenous saline: comparison of rate versus magnitude of correction. Kidney Int 41:1662–1667

    Article  CAS  PubMed  Google Scholar 

  112. Verbalis JG, Martinez AJ (1991) Neurological and neuropathological sequelae of correction of chronic hyponatremia. Kidney Int 39:1274–1282

    Article  CAS  PubMed  Google Scholar 

  113. Sterns RH, Thomas DJ, Herndon RM (1989) Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney Int 35:69–75

    Article  CAS  PubMed  Google Scholar 

  114. Soupart A, Penninckx R, Namias B, Stenuit A, Perier O, Decaux G (1996) Brain myelinolysis following hypernatremia in rats. J Neuropathol Exp Neurol 55:106–113

    Article  CAS  PubMed  Google Scholar 

  115. Ayus JC, Arieff AI (1993) Pathogenesis and prevention of hyponatremic encephalopathy. Endocrinol Metab Clin North Am 22:425–446

    CAS  PubMed  Google Scholar 

  116. Goldszmidt MA, Iliescu EA (2000) DDAVP to prevent rapid correction in hyponatremia. Clin Nephrol 53:226–229

    CAS  PubMed  Google Scholar 

  117. Perianayagam A, Sterns RH, Silver SM, Grieff M, Mayo R, Hix J, Kouides R (2008) DDAVP is effective in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol 3:331–336

    Article  CAS  PubMed  Google Scholar 

  118. Bernstein SA, Williford SL (1997) Intranasal desmopressin-associated hyponatremia: a case report and literature review. J Fam Pract 44:203–208

    CAS  PubMed  Google Scholar 

  119. Das P, Carcao M, Hitzler J (2005) DDAVP-induced hyponatremia in young children. J Pediatr Hematol Oncol 27:330–332

    Article  PubMed  Google Scholar 

  120. Ayus JC, Arieff AI (2002) Therapy of dDAVP-associated hyponatremia can lead to permanent brain damage. J Am Soc Nephrol 13:PUB002

    Google Scholar 

  121. Hasegawa H, Okubo S, Ikezumi Y, Uchiyama K, Hirokawa T, Hirano H, Uchiyama M (2009) Hyponatremia due to an excess of arginine vasopressin is common in children with febrile disease. Pediatr Nephrol 24:507–511

    Article  PubMed  Google Scholar 

  122. Don M, Valerio G, Korppi M, Canciani M (2008) Hyponatremia in pediatric community-acquired pneumonia. Pediatr Nephrol 23:2247–2253

    Article  PubMed  Google Scholar 

  123. Hoorn EJ, Geary D, Robb M, Halperin ML, Bohn D (2004) Acute hyponatremia related to intravenous fluid administration in hospitalized children: an observational study. Pediatrics 113:1279–1284

    Article  PubMed  Google Scholar 

  124. Armon K, Riordan A, Playfor S, Millman G, Khader A (2008) Hyponatraemia and hypokalaemia during intravenous fluid administration. Arch Dis Child 93:285–287

    Article  CAS  PubMed  Google Scholar 

  125. Wattad A, Chiang ML, Hill LL (1992) Hyponatremia in hospitalized children. Clin Pediatr (Phila) 31:153–157

    Article  CAS  Google Scholar 

  126. Cansick J, Rees L, Koffman G, Van't Hoff W, Bockenhauer D (2009) A fatal case of cerebral oedema with hyponatraemia and massive polyuria after renal transplantation. Pediatr Nephrol 24:1231–1234

    Article  PubMed  Google Scholar 

  127. Neville KA, Verge CF, O'Meara MW, Walker JL (2005) High antidiuretic hormone levels and hyponatremia in children with gastroenteritis. Pediatrics 116:1401–1407

    Article  PubMed  Google Scholar 

  128. Mehta S, Kumar P, Narang A (2005) A randomized controlled trial of fluid supplementation in term neonates with severe hyperbilirubinemia. J Pediatr 147:781–785

    Article  CAS  PubMed  Google Scholar 

  129. Neville KA, Verge CF, Rosenberg AR, O'Meara MW, Walker JL (2006) Isotonic is better than hypotonic saline for intravenous rehydration of children with gastroenteritis: a prospective randomized study. Arch Dis Child 91:226–232

    Article  CAS  PubMed  Google Scholar 

  130. Dearlove OR, Ram AD, Natsagdoy S, Humphrey G, Cunliffe M, Potter F (2006) Hyponatraemia after postoperative fluid management in children. Br J Anaesth 97:897–898; author reply 898

    Article  CAS  PubMed  Google Scholar 

  131. Stewart PC, McGrath K (2007) Paediatric maintenance fluids. Br J Anaesth 98:406; author reply 406

    Article  CAS  PubMed  Google Scholar 

  132. Coulthard MG, Cheater LS, Long DA (2007) Perioperative fluid therapy in children. Br J Anaesth 98:146–147

    Article  CAS  PubMed  Google Scholar 

  133. Singhi S, Jayashre M (2009) Free water excess is not the main cause for hyponatremia in critically ill children receiving conventional maintenance fluids. Indian Pediatr 46:577–583

    CAS  PubMed  Google Scholar 

  134. Neville KA, Sandeman DJ, Rubinstein A, Henry GM, McGlynn M, Walker JL (2009) Prevention of hyponatremia during maintenance intravenous fluid administration: a prospective randomized study of fluid type versus fluid rate. J Pediatr doi:10.1016/j.jpeds.2009.07.059

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Moritz.

Additional information

Answers

1. a

2. c

3. d

4. e

5. b

Appendices

Questions

(Answers appear following the reference list)

  1. 1.

    What is the main risk factor for developing hyponatremia?

    1. a.

      AVP excess

    2. b.

      Intravenous fluid therapy

    3. c.

      Prematurity

    4. d.

      Prolonged hospitalization

    5. e.

      Mechanical ventilation

  2. 2.

    Which of the following is NOT a feature of hyponatremic encephalopathy?

    1. a.

      Headache

    2. b.

      Noncardiogenic pulmonary edema

    3. c.

      Hyperpyrexia

    4. d.

      Seizures

    5. e.

      Orthopedic injuries

  3. 3.

    Why are children at increased risk for developing hyponatremic encephalopathy?

    1. a.

      Increased expression of aquaporin 4

    2. b.

      Increased sensitivity of AVP

    3. c.

      Increased basal metabolic rate

    4. d.

      Increased brain- to skull-size ratio

    5. e.

      Increased brain idiogenic osmole production

  4. 4.

    What is the most effective therapy of hyponatremic encephalopathy?

    1. a.

      Vasopressin 2 antagonists

    2. b.

      Mannitol

    3. c.

      0.9% NaCl plus Lasix

    4. d.

      Craniotomy

    5. e.

      3% NaCl

  5. 5.

    Which of the following is NOT a risk factor for developing cerebral demyelination?

    1. a.

      Liver disease

    2. b.

      Acute hyponatremic encephalopathy

    3. c.

      Hypoxia

    4. d.

      Correction in SNa of >25 mEq/L in 48 h

    5. e.

      Thiazide diuretics

Note added in proof

Following the submission of this manuscript, Neville et al. [134] reported on a prospective randomized trial of 124 postoperative children who received either 0.9% NaCl or 0.45% NaCl at either 100% or 50% of standard maintenance. The incidence of hyponatremia (Na < 135) within the first 24 hours of surgery was 30% in the 0.45% NaCl group compared to 10% in the 0.9% NaCl (p=0.02), with 15% of patients in the 0.45% NaCl group having a fall in SNa of ≥5 mEq/L compared to none in the 0.9% NaCl. Fluid restriction at 50% maintenance did not decrease the incidence of hyponatremia, but resulted in a 23% incidence of dehydration. Administration of 0.9% NaCl did not result in clinically significant hypernatremia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, M.L., Ayus, J.C. New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children. Pediatr Nephrol 25, 1225–1238 (2010). https://doi.org/10.1007/s00467-009-1323-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1323-6

Keywords

Navigation