Skip to main content
Log in

Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An implicit partitioned arbitrary Lagrangian– Eulerian approach for fluid-structure interaction computations is considered. Enhancements of the coupled solution procedure by nonlinear multigrid techniques, an adaptive underrelaxation, and proper grid movement techniques are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken C (1937) Studies in practical mathematics II. The evaluation of the latent roots and latent vectors of a matrix. R Soc Edinb 57: 269–304

    MATH  Google Scholar 

  2. de Boer A, van der Schoot MS, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85: 784–795

    Article  Google Scholar 

  3. Briggs WL, Henson VE, McCormick S (2000) Multigrid tutorial, 2 nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  4. Demirdžić I, Perić VE (1995) Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput Methods Appl Mech Eng 125: 235–255

    Article  Google Scholar 

  5. Demirdžić I, Perić M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Methods Fluids 8: 1037–1050

    Article  MATH  Google Scholar 

  6. Farhat C, Degand C, Koobus B, Lesoinne M (1998) Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput Methods Appl Mech Eng 163: 231–245

    Article  MATH  Google Scholar 

  7. FASTEST (2005) User manual. Department of numerical methods in mechanical engineering, Technische Universität Darmstadt

  8. Heck M, Sternel DC, Schäfer M, Yigit S (2006) Influence of numerical and physical parameters on an implicit partitioned fluid-structure solver. In: European conference on computational fluid dynamics, TU Delft, The Netherlands

  9. Hron J, Turek S (2006) A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics. In: Bungartz HJ, Schäfer M(eds) Fluid–structure interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 146–170

    Google Scholar 

  10. Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193: 2087–2104

    Article  MATH  Google Scholar 

  11. Hughes TJR, Liu WK, Zimmmermann TK (1981) Lagrangian-eulerian finite element formulation for incompressible flow computations. Adv Appl Mech 29: 329–349

    MATH  Google Scholar 

  12. Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure poisson equation. Int J Numer Methods Eng 64: 167–203

    Article  MATH  Google Scholar 

  13. Löhner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range and applicability of the loose coupling approach for fsi simulation. In: Bungartz HJ, Schäfer M(eds) Fluid-Structure interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 82–100

    Google Scholar 

  14. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282

    Article  MATH  MathSciNet  Google Scholar 

  15. MpCCI (2004) Mesh-based parallel code coupling interface, user guide V2.0. Fraunhofer Institut für Algorithmen und wissenschaftliches Rechnen SCAI, Bonn

  16. Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory and two-dimensional application. Comput Methods Appl Mech Eng 124: 79–112

    Article  MATH  MathSciNet  Google Scholar 

  17. Schäfer M, Heck M, Yigit S (2006) An implicit partitioned method for numerical simulation of fluid-structure interaction. In: Bungartz HJ, Schäfer M(eds) Fluid-Structure interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 171–194

    Google Scholar 

  18. Smith RE (1998) Transfinite interpolation (TFI) generation systems. In: Thompson JF, Soni BK, Wheaterill NP(eds) Handbook of Grid Generation. CRC Press, Boca Raton, pp 3–15

    Google Scholar 

  19. Spekreijse SP (1995) Elliptic grid generation based on laplace equations and algebraic transformations. J Comput Phys 118: 38–61

    Article  MATH  Google Scholar 

  20. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032

    Article  MATH  Google Scholar 

  21. Taylor RL (2002) FEAP—a finite element analysis program, user manual. University of California, Berkeley

    Google Scholar 

  22. Taylor RL (2003) FEAP—a finite element analysis program. Version 7.5 Theory Manual. University of California, Berkeley

  23. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3d flows. Computer 26: 27–36

    Article  Google Scholar 

  24. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MATH  MathSciNet  Google Scholar 

  25. Wall WA, Gerstenberger A, Gamnitzer P, Förster C, Ramm E (2006) Large deformation fluid-structure interaction—advances in ale methods and new fixed grid approaches. In: Bungartz HJ, Schäfer M(eds) Fluid-Structure Interaction. Modelling, simulation, optimization. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 195–232

    Google Scholar 

  26. Wood WL (1990) Practical time-stepping schemes. Clarendon Press, Oxford

    MATH  Google Scholar 

  27. Wren GP, Ray SE, Aliabadi SK, Tezduyar TE (1997) Simulation of flow problems with moving mechanical components, fluid- structure interactions and two-fluid interfaces. Int J Numer Methods Fluids 24: 1433–1448

    Article  MATH  Google Scholar 

  28. Yigit S, Heck M, Sternel DC, Schäfer M (2007) Efficiency of fluid-structure interaction simulations with adaptive underrelaxation and multigrid acceleration. Int J Multiphys 1(1): 85–99

    Article  Google Scholar 

  29. Yigit S, Heck M, Schäfer M (2008) Grid movement techniques and their influences on laminar fluid-structure interaction computations. J Fluids Struct (accepted)

  30. van Zuijlen AH, Bosscher S, Bijl H (2007) Two level algorithms for partitioned fluid-structure interaction computations. Comput Methods Appl Mech Eng 196: 1458–1470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Sternel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternel, D.C., Schäfer, M., Heck, M. et al. Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. Comput Mech 43, 103–113 (2008). https://doi.org/10.1007/s00466-008-0278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0278-y

Keywords

Navigation