Skip to main content

Advertisement

Log in

Magma storage conditions beneath Dabbahu Volcano (Ethiopia) constrained by petrology, seismicity and satellite geodesy

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A variety of methods exist to constrain sub-volcanic storage conditions of magmas. Petrological, seismological and satellite geodetic methods are integrated to determine storage conditions of peralkaline magmas beneath Dabbahu Volcano, Afar, Ethiopia. Secondary ion mass spectrometry (SIMS) analysis of volatile contents in melt inclusions trapped within phenocrysts of alkali feldspar, clinopyroxene and olivine from pantellerite obsidians representing the youngest eruptive phase (<8 ka) show H2O contents ≤5.8 wt.% and CO2 contents generally below 500 ppm, although rarely as high as 1,500 ppm. Volatile saturation pressures (at 679–835°C) are in the range 43–207 MPa, consistent with published experimental data for similar pantellerites, which show that the phenocryst assemblage of alkali feldspar + cpx + aenigmatite ± ilmenite is stable at 100 to 150 MPa. Inferred magma storage depths for these historic eruptions are ~1–5 km below sea-level, consistent with the depths of earthquakes, associated with magma chamber deflation following a dyke intrusion in the period Oct 2005–Apr 2006. Interferometric synthetic aperture radar (InSAR) data for the same period reveal a broad ~20 km diameter area of uplift. Modelling of different geometries reveals that a series of stacked sills over a 1–5 km depth range best matches the InSAR data. The consistency of depth estimates based on petrological study of ancient eruptions and the seismicity, inflation and deflation of Dabbahu observed in relation to the dyking event of 2005, suggest a small but vertically extensive and potentially long-lived magma storage region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Min 78(7–8):794–803

    Google Scholar 

  • Ayele A, Jacques E, Kassim M, Kidane T, Omar A, Tait S, Nercessian A, de Chabalier J, King G (2007) The volcano-seismic crisis in Afar, Ethiopia starting September 2005. Earth Planet Sci Lett 255(1–2):177–187

    Article  Google Scholar 

  • Ayele A, Keir D, Ebinger C, Wright TJ, Stuart GW, Buck WR, Jacques E, Ogubazghi G, Sholan J (2009) September 2005 mega-dike emplacement in the Manda-Harraro nascent oceanic rift (Afar depression). Geophys Res Lett 36

  • Bailey DK, Macdonald R (1969) Alkali-feldspar fractionation trends and derivation of peralkaline liquids. Am J Sci 267(2):242–248

    Article  Google Scholar 

  • Bailey DK, Cooper JP, Knight JL (1974) Anhydrous melting and crystallization of peralkaline obsidians. Bull Volcanol 38(2):653–665

    Article  Google Scholar 

  • Barberi F, Varet J (1977) Volcanism of Afar—small-scale plate tectonic implications. Geol Soc Am Bull 88(9):1251–1266

    Article  Google Scholar 

  • Barberi F, Ferrara R, Santacroce R, Treuil M, Varet J (1974a) A transitional basalt—pantellerite sequence of fractional crystallisation, the Boina centre, (Afar Rift, Ethiopia). J Petrol 16(1):22–56

    Google Scholar 

  • Barberi F, Santacroce R, Varet J (1974b) Silicic peralkaline volcanic rocks of the Afar Depression (Ethiopia). Bull Volcanol 38(2):755–790

    Article  Google Scholar 

  • Barclay J, Carroll MR, Houghton BF, Wilson CJN (1996) Pre-eruptive volatile content and degassing history of an evolving peralkaline volcano. J Volcanol Geotherm Res 74(1–2):75–87

    Article  Google Scholar 

  • Bizouard H, Barberi F, Varet J (1980) Mineralogy and petrology of Erta Ale and Boina volcanic series, Afar Rift, Ethiopia. J Petrol 21(2):401–436

    Google Scholar 

  • Blundy J, Cashman K (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology 33(10):793–796

    Article  Google Scholar 

  • Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. In: FJ PKT (ed) Minerals, inclusions and volcanic processes. Min Soc Am, 3635 Concorde Pkwy STE 500, Chantilly, VA 20151-1125 USA pp 179–239

  • Bürgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28(1):169–209

    Article  Google Scholar 

  • Cornwell DG, Mackenzie GD, England RW, Maguire PKH, Asfaw LM, Oluma B (2006) Northern main Ethiopian rift crustal structure from new high-precision gravity data. Geol Soc Lond Spec Pub 259(1):307–321

    Article  Google Scholar 

  • Danyushevsky LV, Della Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas; petrological implications. Contribu Min Petrol 138(1):68–83

    Article  Google Scholar 

  • Di Carlo I, Rotolo SG, Scaillet B, Buccheri V, Pichavant M (2010) Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy. J Petrol 51:2245–2276

    Article  Google Scholar 

  • Dixon JE (1997) Degassing of alkalic basalts. Am Min 82(3–4):368–378

    Google Scholar 

  • Ebinger C, Keir D, Ayele A, Calais E, Wright TJ, Belachew M, Hammond JOS, Campbell E, Buck WR (2008) Capturing magma intrusion and faulting processes during continental rupture: seismicity of the Dabbahu (Afar) rift. Geophys J Int 174:1138–1152

    Article  Google Scholar 

  • Einarsson P (1978) S-wave shadows in the Krafla Caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull Volcanol 41(3):187–195

    Article  Google Scholar 

  • Feuillet N, Nostro C, Chiarabba C, Cocco M (2004) Coupling between earthquake swarms and volcanic unrest at the Alban Hills Volcano (central Italy) modeled through elastic stress transfer. J Geophys Res-Solid Earth 109(B2)

  • Gioncada A, Landi P (2010) The pre-eruptive volatile contents of recent basaltic and pantelleritic magmas at Pantelleria (Italy). Bull Volcanol 189:191–201

    Google Scholar 

  • Grandin R, Socquet A, Doin MP, Jacques E, de Chabalier JB, King GCP (2010) Transient rift opening in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia) imaged by time-dependent elastic inversion of interferometric synthetic aperture radar data. J Geophys Res 115 B:B09403

    Article  Google Scholar 

  • Hamling IJ, Ayele A, Bennati L, Calais E, Ebinger CJ, Keir D, Lewi E, Wright TJ, Yirgu G, (2009) Geodetic observations of the ongoing Dabbahu rifting episode: new dyke intrusions in 2006 and 2007. Geophys J Int 178:989–1003

    Google Scholar 

  • Hamling IJ, Wright TJ, Calais E, Bennati L, Lewi E (2010) Stress transfer between thirteen successive dyke intrusions in Ethiopia. Nature Geosci 3:713–717

    Google Scholar 

  • Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat Geosci 2(11):785–789

    Article  Google Scholar 

  • Horn S, Schmincke HU (2000) Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull Volcanol 61(8):537–555

    Google Scholar 

  • Humphreys MCS, Kearns SL, Blundy JD (2006) SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: implications for melt inclusion analysis. Am Min 91(4):667–679

    Article  Google Scholar 

  • Lahitte P, Gillot P, Courtillot V (2003) Silicic central volcanoes as precursors to rift propagation; the Afar case. Earth Planet Sci Lett 207(1–4):103–116

    Article  Google Scholar 

  • Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167(1–4):37–56

    Article  Google Scholar 

  • Lowernstern JB, Mahood GA (1991) New data on magmatic H2O contents of pantellerites with implications for petrogenesis and eruptive dynamics at Pantelleria. Bull Volcanol 54:78–83

    Article  Google Scholar 

  • Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38(2):498–516

    Article  Google Scholar 

  • Macdonald R et al (1995) Petrogenesis of Silali volcano, Gregory Rift, Kenya. J Geol Soc 152:703–720

    Article  Google Scholar 

  • Macdonald R et al (2011) Mineral stability in peralkaline silicic rocks: Information from trachytes of the Menengai volcano, Kenya. Lithos 125:553–568

    Article  Google Scholar 

  • Mahatsente R, Jentzsch G, Jahr T (1999) Crustal structure of the Main Ethiopian Rift from gravity data: 3-dimensional modeling. Tectonophysics 313(4):363–382

    Article  Google Scholar 

  • Marshall AS et al (1998) Phenocrystic fluorites in peralkaline rhyolites, Olkaria, Kenya Rift Valley. Min Mag 62:477–486

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1992) Experimental study of chlorine behaviour in hydrous silicic melts. Geochim Et Cosmochim Acta 56(2):607–616

    Article  Google Scholar 

  • Metrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka K, Tepley FJ (eds) Annual Fall American-Geophysical-Union Meeting. Min Soc Amer, San Franscisco, pp 363–402

  • Mickus K, Tadesse K, Keller GR, Oluma B (2007) Gravity analysis of the main Ethiopian rift. J Afr Earth Sci 48(2–3):59–69

    Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute 36:99–134

    Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604

    Article  Google Scholar 

  • Newman S, Stolper EM, Epstein S (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Min 71:1527–1541

    Google Scholar 

  • Nicholls J, Carmichael ISE (1969) Peralkaline acid liquids: a petrological study. Contrib Min Petrol 20(3):268–294

    Article  Google Scholar 

  • Nielsen RL, Michael PJ, Sours-Page R (1998) Chemical and physical indicators of compromised melt inclusions. Geochim Et Cosmochim Acta 62(5):831–839

    Article  Google Scholar 

  • Nooner SL, Bennati L, Calais E, Buck WR, Hamling IJ, Wright TJ, Lewi E (2009) Post-rifting relaxation in the Afar region, Ethiopia. Geophys Res Lett 36:L21308

    Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75:1135–1154

    Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95

    Article  Google Scholar 

  • Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418(6894):167–171

    Article  Google Scholar 

  • Pritchard ME, Simons M (2004) An InSAR-based survey of volcanic deformation in the central Andes. Geochem Geophys Geosyst 5:Q02002

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Minerals, inclusions and volcanic processes. Rev Min Geochem 69:61–120

    Article  Google Scholar 

  • Rowland J, Baker E, Ebinger C, Keir D, Kidane T, Biggs J, Hayward N, Wright TJ (2007) Fault growth at a nascent slow-spreading ridge: 2005 Dabbahu rifting episode, Afar. Geophys J Int 171(3):1226–1246

    Article  Google Scholar 

  • Sasai Y (1991) Piezomagnetic field associated with the Mogi model revisited—analytic solution for finite spherical source. J Geomagn Geoelectr 43(1):21–64

    Article  Google Scholar 

  • Scaillet B, Macdonald R (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. J Petrol 42(4):825–845

    Article  Google Scholar 

  • Scaillet B, Macdonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya rift valley. J Petrology 44(10):1867–1894

    Google Scholar 

  • Scaillet B, Macdonald R (2006) Experimental constraints on pre-eruption conditions of pantelleritic magmas: evidence from the Eburru complex, Kenya Rift. Lithos 91(1–4):95–108

    Article  Google Scholar 

  • Schumacher JC (1991) Empirical ferric iron correction-necessity, assumptions, and effects on selected geothermobarometers. Mineral Mag 55:3–18

    Google Scholar 

  • Shalev E, Kenedi CL, Malin P, Voight V, Miller V, Hidayat D, Sparks RSJ, Minshull T, Paulatto M, Brown L, Mattioli G (2010) Three-dimensional seismic velocity tomography of Montserrat from the SEA-CALIPSO offshore/onshore experiment. Geophys Res Lett 37

  • Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2-H2O fluid phase. Chem Geol 174(1–3):333–347

    Article  Google Scholar 

  • Thompson RN, Mackenzie WS (1967) Feldspar-liquid equilibria in peralkaline acid liquids—an experimental study. Am J Sci 265(8):714–734

    Article  Google Scholar 

  • Webster J, Taylor RP, Bean C (1993) Pre-eruptive melt composition and constraints on degassing of a water-rich pantellerite magma, Fantale volcano. Ethiopia Contrib Min Petrol 114:1

    Google Scholar 

  • Whaler KA, Hautot S (2006) The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) Afar volcanic province within the East African rift system pp 293–305

  • White JC, Holt GS, Parker DF, Ren MH (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: systematics of trace-element partitioning. Am Min 88(2–3):316–329

    Google Scholar 

  • White JC, Ren M, Parker DF (2005) Variation in mineralogy, temperature and oxygen fugacity in a suite of strongly peralkaline lavas and tuffs, Pantelleria, Italy. Can Min 43:1331–1347

    Article  Google Scholar 

  • Wilding MC, MacDonald R, Davies JE, Fallick AE (1993) Volatile characteristics of peralkaline rhyolites from Kenya: an ion microprobe, infrared spectroscopic and hydrogen isotope study. Contrib Min Petrol 114(2):264–275

    Article  Google Scholar 

  • Williams-Jones G, Rymer H, Mauri G, Gottsmann J, Poland M, Carbone D (2008) Toward continuous 4D microgravity monitoring of volcanoes. Geophysics 73(6):WA19–WA28

    Google Scholar 

  • Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol Soc Am Bull 117(7–8):846–864

    Article  Google Scholar 

  • Wright TJ (2002) Remote monitoring of the earthquake cycle using satellite radar interferometry. Phil Trans R Soc Lond Series A: Math, Phys Eng Sci 360(1801):2873–2888

    Article  Google Scholar 

  • Wright TJ, Ebinger CJ, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442:291–294

    Article  Google Scholar 

  • Yang X-M, Davis PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J Geophys Res 93:4249–4257

    Google Scholar 

  • Zellmer G, Annen C (2008) An introduction to magma dynamics (in Dynamics of crystal magma transfer, storage and differentiation). Geol Soc Spec Publ 304:1–13

Download references

Acknowledgements

This work has been supported by the Natural Environment Research Council, Afar Rift Consortium grant NE/F007604/1. The authors acknowledge the generous support of the University of Addis Ababa with fieldwork arrangements, particularly E. Lewi and A. Ayele, and the Afar Regional Government for invaluable assistance. Detailed Dabbahu earthquake data were kindly provided by C. Ebinger. The authors gratefully acknowledge technical assistance provided by S. Kearns (EMPA), R. Hinton and J. Craven (SIMS), N. Marsh and R. Kelly (XRF) and thorough reviews by J. Lowenstern and R. MacDonald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Field.

Additional information

Editorial responsibility: M. Ripepe

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 37 kb)

ESM 2

(PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, L., Blundy, J., Brooker, R.A. et al. Magma storage conditions beneath Dabbahu Volcano (Ethiopia) constrained by petrology, seismicity and satellite geodesy. Bull Volcanol 74, 981–1004 (2012). https://doi.org/10.1007/s00445-012-0580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0580-6

Keywords

Navigation