Skip to main content

Advertisement

Log in

The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Carrion provides a resource for a subset of animal species that deliver a critical ecosystem service by consuming dead animal matter and recycling its nutrients. A growing number of studies have also shown various effects of carrion on different plant and microbial communities. However, there has been no review of these studies to bring this information together and identify priority areas for future research. We review carrion ecology studies from the last two decades and summarise the range of spatial and temporal effects of carrion on soil nutrients, microbes, plants, arthropods, and vertebrates. We identify key knowledge gaps in carrion ecology, and discuss how closing these gaps can be achieved by focusing future research on the (1) different kinds of carrion resources, (2) interactions between different components of the carrion community, (3) the ways that ecosystem context can moderate carrion effects, and (4) considerations for carrion management. To guide this research, we outline a framework that builds on the ‘ephemeral resource patch’ concept, and helps to structure research questions that link localised effects of carrion with their consequences at landscape scales. This will enable improved characterisation of carrion as a unique resource pool, provide answers for land managers in a position to influence carrion availability, and establish the ways that carrion affects the dynamics of species diversity and ecological processes within landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65

    Article  PubMed  CAS  Google Scholar 

  • Beasley JC, Olson ZH, DeVault TL (2012) Carrion cycling in food webs: comparisons amongst terrestrial and marine ecosystems. Oikos 121:1021–1026

    Article  Google Scholar 

  • Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12

    Article  Google Scholar 

  • Boulton AJ, Lake PS (1988) Dynamics of heterotrophic succession in carrion arthropod assemblages—a comment on Schoenly and Reid (1987). Oecologia 76:477–480

    Google Scholar 

  • Braack LEO (1987) Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia 72:402–409

    Article  Google Scholar 

  • Bump JK, Peterson RO, Vucetich JA (2009a) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167

    Article  PubMed  Google Scholar 

  • Bump JK, Webster CR, Vucetich JA, Peterson RO, Shields JM, Powers MD (2009b) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12:996–1007

    Article  Google Scholar 

  • Burkepile DE et al (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831

    Article  PubMed  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  PubMed  CAS  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 40:129–137

    Article  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2010) Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci Int 200:60–66

    Article  PubMed  Google Scholar 

  • Coe M (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86

    Google Scholar 

  • Côté SD, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004) Ecological impacts of deer over abundance. Annu Rev Ecol Evol Syst 35:113–147

    Article  Google Scholar 

  • Danell K, Berteaux D, Brathen KA (2002) Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55:389–392

    Google Scholar 

  • DeVault TL, Rhodes OE, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234

    Article  Google Scholar 

  • DeVault TL, Olson ZH, Beasley JC, Rhodes OE (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274

    Article  Google Scholar 

  • Doube BM (1987) Spatial and temporal organization in communities associated with dung pads and carcasses. In: Gee JHR, Giller PS (eds) Organization of communities past and present. Blackwell, Oxford

    Google Scholar 

  • Dupont H, Mihoub JB, Bobbe S, Sarrazin F (2012) Modelling carcass disposal practices: implications for the management of an ecological service provided by vultures. J Appl Ecol. doi:10.1111/j.1365-2664.2012.02111.x

    Google Scholar 

  • Estes JA et al (2011) Trophic downgrading of planet earth. Science 333:301–306

    Article  PubMed  CAS  Google Scholar 

  • Fahey TJ et al (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75:109–176

    Article  CAS  Google Scholar 

  • Finn JA (2001) Ephemeral resource patches as model systems for diversity-function experiments. Oikos 92:363–366

    Article  Google Scholar 

  • Gessner MO et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Gordon IJ, Hester AJ, Festa-Bianchet M (2004) The management of wild large herbivores to meet economic, conservation and environmental objectives. J Appl Ecol 41:1021–1031

    Article  Google Scholar 

  • Hanski I (1987) Carrion fly community dynamics—patchiness, seasonality and coexistence. Ecol Entomol 12:257–266

    Article  Google Scholar 

  • Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Heard SB (1998) Resource patch density and larval aggregation in mushroom-breeding flies. Oikos 81:187–195

    Article  Google Scholar 

  • Hoback WW, Bishop AA, Kroemer J, Scalzitti J, Shaffer JJ (2004) Differences amongst antimicrobial properties of carrion beetle secretions reflect phylogeny and ecology. J Chem Ecol 30:719–729

    Article  PubMed  CAS  Google Scholar 

  • Hocking MD, Reynolds JD (2011) Impacts of salmon on riparian plant diversity. Science 331:1609–1612

    Article  PubMed  CAS  Google Scholar 

  • Horenstein MB, Linhares AX, De Ferradas BR, Garcia D (2010) Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science. Med Vet Entomol 24:16–25

    Article  PubMed  Google Scholar 

  • Hunter JS, Durant SM, Caro TM (2007) Patterns of scavenger arrival at cheetah kills in Serengeti National Park Tanzania. Afr J Ecol 45:275–281

    Article  Google Scholar 

  • Ives AR (1991) Aggregation and coexistence in a carrion fly community. Ecol Monogr 61:75–94

    Article  Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Kavazos CRJ, Wallman JF (2012) Community composition of carrion-breeding blowflies (Diptera: Calliphoridae) along an urban gradient in south-eastern Australia. Landsc Urban Plan 106:183–190

    Article  Google Scholar 

  • Klein BC (1989) Effects of forest fragmentation on dung and carrion beetle communities in central amazonia. Ecology 70:1715–1725

    Article  Google Scholar 

  • Kneidel KA (1984) Competition and disturbance in communities of carrion breeding Diptera. J Anim Ecol 53:849–865

    Article  Google Scholar 

  • Kouki J, Hanski I (1995) Population aggregation facilitates coexistence of many competing carrion fly species. Oikos 72:223–227

    Article  Google Scholar 

  • Lang MD, Allen GR, Horton BJ (2006) Blowfly succession from possum (Trichosurus vulpecula) carrion in a sheep-farming zone. Med Vet Entomol 20:445–452

    Article  PubMed  CAS  Google Scholar 

  • Lavelle P et al (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Manning AD, Fischer J, Felton A, Newell B, Steffen W, Lindenmayer DB (2009) Landscape fluidity—a unifying perspective for understanding and adapting to global change. J Biogeogr 36:193–199

    Article  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM, Hall RO (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225

    Article  PubMed  Google Scholar 

  • Margalida A, Bertran J, Heredia R (2009) Diet and food preferences of the endangered Bearded Vulture Gypaetus barbatus: a basis for their conservation. Ibis 151:235–243

    Google Scholar 

  • Margalida A, Colomer MA, Sanuy D (2011) Can wild ungulate carcasses provide enough biomass to maintain avian scavenger populations?. An empirical assessment using a bio-inspired computational model, PLoS ONE 6

    Google Scholar 

  • Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2010) Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: composition and residency patterns of carrion fauna. Forensic Sci Int 195:42–51

    Article  PubMed  Google Scholar 

  • Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2011) Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci Int 207:150–163

    Article  PubMed  Google Scholar 

  • Mégnin P (1894) La faune des cadavres application de l’entomologie à la médecine légale. Encylopédie Scientifique des Aide-Mémoire. Masson, Paris

    Google Scholar 

  • Melis C, Teurlings I, Linnell JDC, Andersen R, Bordoni A (2004) Influence of a deer carcass on Coleopteran diversity in a Scandinavian boreal forest: a preliminary study. Eur J Wildl Res 50:146–149

    Google Scholar 

  • Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Bialeowieza Primeval Forest, Poland. Ecol Res 22:807–813

    Article  CAS  Google Scholar 

  • Moore JC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Moura AO, Monteiro-Filho ELD, de Carvalho CJB (2005) Heterotrophic succession in carrion arthropod assemblages. Braz Arch Biol Technol 48:477–486

    Article  Google Scholar 

  • Olson ZH, Beasley JC, DeVault TL, Rhodes OE (2012) Scavenger community response to the removal of a dominant scavenger. Oikos 121:77–84

    Article  Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661

    Article  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  • Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181

    Article  PubMed  CAS  Google Scholar 

  • Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Putman RJ (1978a) Flow of energy and organic matter from a carcass during decomposition. 2. Decomposition of small mammal carrion in temperate systems. Oikos 31:58–68

    Article  CAS  Google Scholar 

  • Putman RJ (1978b) Patterns of carbon dioxide evolution from decaying carrion. 1. Decomposition of small mammal carrion in temperate systems. Oikos 31:47–57

    Article  CAS  Google Scholar 

  • Putman RJ (1978c) Role of carrion-frequenting arthropods in the decay process. Ecol Entomol 3:133–139

    Article  Google Scholar 

  • Read JL, Wilson D (2004) Scavengers and detritivores of kangaroo harvest offcuts in arid Australia. Wildl Res 31:51–56

    Article  Google Scholar 

  • Rozen DE, Engelmoer DJP, Smiseth PT (2008) Antimicrobial strategies in burying beetles breeding on carrion. Proc Natl Acad Sci USA 105:17890–17895

    Article  PubMed  CAS  Google Scholar 

  • Schimel JP, Bennett A (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schmitz OJ, Jones HP, Barton BT (2008) Scavengers. In: Jorgensen SE, Fath B (eds) Encyclopedia of Ecology. Elsevier, Amsterdam, pp 3160–3164

    Chapter  Google Scholar 

  • Schoenly K (1991) Food web structure in dung and carrion arthropod assemblages, null models and monte-carlo simulation: applications to medical veterinary entomology. J Agric Entomol 8:227–249

    Google Scholar 

  • Schoenly K (1992) A statistical analysis of successional patterns in carrion arthropod assemblages: implications for forensic entomology and determination of the postmortem interval. J Forensic Sci 37:1489–1513

    PubMed  CAS  Google Scholar 

  • Schoenly K, Reid W (1983) Community structure of carrion arthropods in the Chihuahuan desert. J Arid Environ 6:253–263

    Google Scholar 

  • Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion arthropod assemblages: discrete series or a continuum of change? Oecologia 73:192–202

    Article  Google Scholar 

  • Schoenly KG, Reid W (1989) Dynamics of heterotrophic succession in carrion revisited—a reply to Boulton and Lake (1988). Oecologia 79:140–142

    Article  Google Scholar 

  • Selva N, Fortuna MA (2007) The nested structure of a scavenger community. Proc R Soc Lond B 274:1101–1108

    Article  Google Scholar 

  • Sevenster JG, VanAlphen JJM (1996) Aggregation and coexistence.2. A neotropical Drosophila community. J Anim Ecol 65:308–324

    Article  Google Scholar 

  • Stokes KL, Forbes SL, Benninger LA, Carter DO, Tibbett M (2009) Decomposition studies using animal models in contrasting environments: evidence from temporal changes in soil chemistry and microbial activity. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, New York, pp 357–377

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Tomberlin JK, Benbow ME, Tarone AM, Mohr RM (2011a) Basic research in evolution and ecology enhances forensics. Trends Ecol Evol 26:53–55

    Article  PubMed  Google Scholar 

  • Tomberlin JK, Mohr RM, Benbow ME, Tarone AM, VanLaerhoven S (2011b) A roadmap for bridging basic and applied research in forensic entomology. Annu Rev Entomol 65:401–421

    Article  Google Scholar 

  • Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between above ground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Watson EJ, Carlton CE (2005) Insect succession and decomposition of wildlife carcasses during fall and winter in Louisiana. J Med Entomol 42:193–203

    Article  PubMed  CAS  Google Scholar 

  • Wilmers CC, Getz WM (2004) Simulating the effects of wolf-elk population dynamics on resource flow to scavengers. Ecol Model 177:193–208

    Article  Google Scholar 

  • Wilmers CC, Post E (2006) Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob Change Biol 12:403–409

    Article  Google Scholar 

  • Wilmers CC, Crabtree RL, Smith DW, Murphy KM, Getz WM (2003) Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J Anim Ecol 72:909–916

    Article  Google Scholar 

  • Wilson EO (1987) The little things that run the world (The importance and conservation of invertebrates). Conserv Biol 1:344–346

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135

    Article  PubMed  Google Scholar 

  • Woodcock BA, Watt AD, Leather SR (2002) Aggregation, habitat quality and coexistence: a case study on carrion fly communities in slug cadavers. J Anim Ecol 71:131–140

    Article  Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567

    Article  PubMed  CAS  Google Scholar 

  • Yang LH (2008) Pulses of dead periodical cicadas increase herbivory of American bellflowers. Ecology 89:1497–1502

    Article  PubMed  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–634

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heloise Gibb, Rieks van Klinken, Robert Parmenter, and two anonymous reviewers for providing constructive and helpful comments on the manuscript. A.D.M. was supported by an Australian Research Council Future Fellowship (FT100100358) and the Mulligans Flat–Goorooyaroo Woodland Experiment. The authors declare no conflict of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Barton.

Additional information

Communicated by Riccardo Bommarco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, P.S., Cunningham, S.A., Lindenmayer, D.B. et al. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013). https://doi.org/10.1007/s00442-012-2460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2460-3

Keywords

Navigation