Skip to main content
Log in

Metabolic preconditioning of mammalian cells: mimetic agents for hypoxia lack fidelity in promoting phosphorylation of pyruvate dehydrogenase

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Induction of HIF-1α by oxygen limitation promotes increased phosphorylation and catalytic depression of mitochondrial pyruvate dehydrogenase (PDH) and an enhanced glycolytic poise in cells. Cobalt chloride and desferrioxamine are widely used as mimics for hypoxia because they increase the levels of HIF-1α. We evaluated the ability of these agents to elicit selected physiological responses to hypoxia as a means to metabolically precondition mammalian cells, but without the detrimental effects of hypoxia. We show that, while CoCl2 does increase HIF-1α in a dose-dependent manner, it unexpectedly and strikingly decreases PDH phosphorylation at E1α sites 1, 2, and 3 (Ser293, Ser300, and Ser232, respectively) in HepG2 cells. This same effect is also observed for site 1 in mouse NIH/3T3 fibroblasts and J774 macrophages. CoCl2 unexpectedly decreases the mRNA expression for PDH kinase-2 in HepG2 cells, which likely explains the dephosphorylation of PDH observed. And nor does desferrioxamine promote the expected increase in PDH phosphorylation. Dimethyloxaloylglycine (a prolyl hydroxylase inhibitor) performs better in this regard, but failed to promote the stronger effects seen with hypoxia. Consequently, CoCl2 and desferrioxamine are unreliable mimics of hypoxia for physiological events downstream of HIF-1α stabilization. Our study demonstrates that mimetic chemicals must be chosen with caution and evaluated thoroughly if bona fide cellular outcomes are to be promoted with fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alchera E, Dal Ponte C, Imarisio C, Albano E, Carini R (2010) Molecular mechanisms of liver preconditioning. World J Gastroenterol 16:6058–6067

    Article  PubMed  CAS  Google Scholar 

  • Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329:191–196

    PubMed  CAS  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    Article  PubMed  CAS  Google Scholar 

  • Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    PubMed  CAS  Google Scholar 

  • Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, Lowes BD, Han J, Borchers CH, Buttrick PM, Kominsky DJ, Colgan SP, Eltzschig HK (2012) Adora2b-elicited per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18:774–782

    Article  PubMed  CAS  Google Scholar 

  • Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, Chen W, Clish CB, Ayata C, Brookes PS, Mootha VK (2010) Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28:249–255

    PubMed  CAS  Google Scholar 

  • Gohil VM, Offner N, Walker JA, Sheth SA, Fossale E, Gusella JF, MacDonald ME, Neri C, Mootha VK (2011) Meclizine is neuroprotective in models of Huntington’s disease. Hum Mol Genet 20:294–300

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MA, Glass GA, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84:7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Dunning S, Bunn H (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Goldwasser E, Jacobson LO, Fried W, Plzak LF (1958) Studies on erythropoiesis: V. The effect of cobalt on the production of erythropoietin. Blood 13:55–60

    PubMed  CAS  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860

    Article  PubMed  CAS  Google Scholar 

  • Hand SC, Menze MA, Borcar A, Patil Y, Covi JA, Reynolds JA, Toner M (2011a) Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. J Insect Physiol 57:584–594

    Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011b) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul 42:249–259

    Article  CAS  Google Scholar 

  • Hyvärinen J, Hassinen IE, Sormunen R, Mäki JM, Kivirikko KI, Koivunen P, Myllyharju J (2010) Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem 285:13646–13657

    Article  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, Av K, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  • Ježek P, Plecitá-Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622

    Article  PubMed  Google Scholar 

  • Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172–C1180

    PubMed  CAS  Google Scholar 

  • Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta 1807:552–561

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  PubMed  CAS  Google Scholar 

  • Kim J-W, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  Google Scholar 

  • Korotchkina LG, Patel MS (2001) Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 276:37223–37229

    Article  PubMed  CAS  Google Scholar 

  • Lu C-W, Lin S-C, Chen K-F, Lai Y-Y, Tsai S-J (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283:28106–28114

    Article  PubMed  CAS  Google Scholar 

  • Menze MA, Clavenna MJ, Hand SC (2005) Depression of cell metabolism and proliferation by membrane-permeable and -impermeable modulators: role for AMP-to-ATP ratio. Am J Physiol Regul Integr Comp Physiol 288:R501–R510

    Article  PubMed  CAS  Google Scholar 

  • Menze MA, Chakraborty N, Clavenna M, Banerjee M, Liu X-H, Toner M, Hand SC (2010) Metabolic preconditioning of cells with AICAR-riboside: improved cryopreservation and cell-type specific impacts on energetics and proliferation. Cryobiology 61:79–88

    Article  PubMed  CAS  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J Biol Chem 272:11205–11214

    Article  PubMed  CAS  Google Scholar 

  • Sarkar K, Cai Z, Gupta R, Parajuli N, Fox-Talbot K, Darshan MS, Gonzalez FJ, Semenza GL (2012) Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proc Natl Acad Sci USA 109:10504–10509

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    PubMed  CAS  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Semenza G (1993a) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–3615

    PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1993b) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Benjamin Adams from the Department of Entomology at Louisiana State University for his help in performing statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurva Borcar.

Additional information

This study was supported by National Institutes of Health (2-RO1-DK046270-14A1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borcar, A., Menze, M.A., Toner, M. et al. Metabolic preconditioning of mammalian cells: mimetic agents for hypoxia lack fidelity in promoting phosphorylation of pyruvate dehydrogenase. Cell Tissue Res 351, 99–106 (2013). https://doi.org/10.1007/s00441-012-1517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1517-2

Keywords

Navigation