Skip to main content

Advertisement

Log in

Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

More than a decade of research has shown that Sertoli cell proliferation is regulated by thyroid hormone. Neonatal hypothyroidism lengthens the period of Sertoli cell proliferation, leading to increases in Sertoli cell number, testis weight, and daily sperm production (DSP) when euthyroidism is re-established. In contrast, the neonatal Sertoli cell proliferative period is shortened under hyperthyroid conditions, but the mechanism by which thyroid hormone is able to negatively regulate Sertoli cell proliferation has been unclear. Recent progress in the understanding of the cell cycle has provided the opportunity to dissect the molecular targets responsible for thyroid-hormone-mediated effects on Sertoli cell proliferation. In this review, we discuss recent results indicating a critical role for the cyclin-dependent kinase inhibitors (CDKI) p27Kip1 and p21Cip1 in establishing Sertoli cell number, testis weight, and DSP, and the ability of thyroid hormone to modulate these CDKIs. Based on these recent results, we propose a working hypothesis for the way in which thyroid hormone regulates the withdrawal of the cell cycle by controlling CDKI degradation. Finally, although Sertoli cells have been shown to have two biologically active thyroid hormone receptor (TR) isoforms, TRα1 and TRβ1, experiments with transgenic mice lacking TRα or TRβ illustrate that only one TR mediates thyroid hormone effects in neonatal Sertoli cells. Although significant gaps in our knowledge still remain, advances have been made toward appreciation of the molecular sequence of events that occur when thyroid hormone stimulates Sertoli cell maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arambepola NK, Bunick D, Cooke PS (1998a) Thyroid hormone and follicle-stimulating hormone regulate Mullerian-inhibiting substance messenger ribonucleic acid expression in cultured neonatal rat Sertoli cells. Endocrinology 139:4489–4495

    Article  PubMed  Google Scholar 

  • Arambepola NK, Bunick D, Cooke PS (1998b) Thyroid hormone effects on androgen receptor messenger RNA expression in rat Sertoli and peritubular cells. J Endocrinol 156:43–50

    Article  PubMed  Google Scholar 

  • Ballock RT, Zhou X, Mink LM, Chen DH, Mita BC, Stewart MC (2000) Expression of cyclin-dependent kinase inhibitors in epiphyseal chondrocytes induced to terminally differentiate with thyroid hormone. Endocrinology 141:4552–4557

    Article  PubMed  Google Scholar 

  • Barker SB, Klitgaard HM (1952) Metabolism of tissues excised from thyroxine-injected rats. Am J Physiol 170:81–86

    PubMed  Google Scholar 

  • Barrera-Hernandez G, Park KS, Dace A, Zhan Q, Cheng SY (1999) Thyroid hormone-induced cell proliferation in GC cells is mediated by changes in G1 cyclin/cyclin-dependent kinase levels and activity. Endocrinology 140:5267–5274

    Article  PubMed  Google Scholar 

  • Beumer TL, Kiyokawa H, Roepers-Gajadien HL, Bos LA van den, Lock TM, Gademan IS, Rutgers DH, Koff A, Rooij DG de (1999) Regulatory role of p27kip1 in the mouse and human testis. Endocrinology 140:1834–1840

    Article  PubMed  Google Scholar 

  • Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278:25752–25757

    Article  PubMed  Google Scholar 

  • Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296:2174–2176

    Article  PubMed  Google Scholar 

  • Bunick D, Kirby J, Hess RA, Cooke PS (1994) Developmental expression of testis messenger ribonucleic acids in the rat following propylthiouracil-induced neonatal hypothyroidism. Biol Reprod 51:706–713

    Article  PubMed  Google Scholar 

  • Burton PB, Raff MC, Kerr P, Yacoub MH, Barton PJ (1999) An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes. Dev Biol 216:659–670

    Article  PubMed  Google Scholar 

  • Buzzard JJ, Morrison JR, O’Bryan MK, Song Q, Wreford NG (2000) Developmental expression of thyroid hormone receptors in the rat testis. Biol Reprod 62:664–669

    Article  PubMed  Google Scholar 

  • Buzzard JJ, Farnworth PG, De Kretser DM, O’Connor AE, Wreford N G, Morrison JR (2003) Proliferative phase Sertoli cells display a developmentally regulated response to activin in vitro. Endocrinology 144:474–483

    Article  PubMed  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  PubMed  Google Scholar 

  • Chang KH, Chen Y, Chen TT, Chou WH, Chen PL, Ma YY, Yang-Feng TL, Leng X, Tsai MJ, O’Malley BW, Lee WH (1997) A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein. Proc Natl Acad Sci USA 94:9040–9045

    Article  PubMed  Google Scholar 

  • Chibazakura T, McGrew SG, Cooper JA, Yoshikawa H, Roberts JM (2004) Regulation of cyclin-dependent kinase activity during mitotic exit and maintenance of genome stability by p21, p27, and p107. Proc Natl Acad Sci USA 101:4465–4470

    Article  PubMed  Google Scholar 

  • Cipriano SC, Chen L, Burns KH, Koff A, Matzuk MM (2001) Inhibin and p27 interact to regulate gonadal tumorigenesis. Mol Endocrinol 15:985–996

    Article  PubMed  Google Scholar 

  • Coats S, Whyte P, Fero ML, Lacy S, Chung G, Randel E, Firpo E, Roberts JM (1999) A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr Biol 9:163–173

    Article  PubMed  Google Scholar 

  • Cooke PS, Meisami E (1991) Early hypothyroidism in rats causes increased adult testis and reproductive organ size but does not change testosterone levels. Endocrinology 129:237–243

    PubMed  Google Scholar 

  • Cooke PS, Hess RA, Porcelli J, Meisami E (1991) Increased sperm production in adult rats after transient neonatal hypothyroidism. Endocrinology 129:244–248

    PubMed  Google Scholar 

  • Cooke PS, Zhao YD, Bunick D (1994) Triiodothyronine inhibits proliferation and stimulates differentiation of cultured neonatal Sertoli cells: possible mechanism for increased adult testis weight and sperm production induced by neonatal goitrogen treatment. Biol Reprod 51:1000–1005

    Article  PubMed  Google Scholar 

  • Cortes D, Muller J, Skakkebaek NE (1987) Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl 10:589–596

    PubMed  Google Scholar 

  • De Franca LR, Hess RA, Cooke PS, Russell LD (1995) Neonatal hypothyroidism causes delayed Sertoli cell maturation in rats treated with propylthiouracil: evidence that the Sertoli cell controls testis growth. Anat Rec 242:57–69

    Article  PubMed  Google Scholar 

  • Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744

    Article  PubMed  Google Scholar 

  • Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, Curran T (1996) Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 15:3006–3015

    PubMed  Google Scholar 

  • Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, Legrand C, Gauthier K, Kedinger M, Malaval L, Rousset B, Samarut J (1997) The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 16:4412–4420

    PubMed  Google Scholar 

  • Francavilla S, Cordeschi G, Properzi G, Di Cicco L, Jannini EA, Palmero S, Fugassa E, Loras B, D’Armiento M (1991) Effect of thyroid hormone on the pre- and post-natal development of the rat testis. J Endocrinol 129:35–42

    PubMed  Google Scholar 

  • Gonzalez-Sancho JM, Figueroa A, Lopez-Barahona M, Lopez E, Beug H, Munoz A (2002) Inhibition of proliferation and expression of T1 and cyclin D1 genes by thyroid hormone in mammary epithelial cells. Mol Carcinog 34:25–34

    Article  PubMed  Google Scholar 

  • Griswold MD, Solari A, Tung PS, Fritz IB (1977) Stimulation by follicle-stimulating hormone of DNA synthesis and of mitosis in cultured Sertoli cells prepared from testes of immature rats. Mol Cell Endocrinol 7:151–165

    Article  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  Google Scholar 

  • Holsberger DR, Jirawatnotai S, Kiyokawa H, Cooke PS (2003) Thyroid hormone regulates the cell cycle inhibitor p27Kip1 in postnatal murine Sertoli cells. Endocrinology 144:3732–3738

    Article  PubMed  Google Scholar 

  • Holsberger DR, Buchold GM, Castro Leal M, Kiesewetter SE, O’Brien DA, Hess RA, Franca LR, Kiyokawa H, Cooke PS (2005) Cell cycle inhibitors p27Kip1 and p21Cip1 regulate murine Sertoli cell proliferation. Boil Reprod Published on February 23, 2005 as DOI: 10.1095/biolrepred.105.040386

  • Huang Z, Tang XM, Cambi F (2002) Down-regulation of the retinoblastoma protein (rb) is associated with rat oligodendrocyte differentiation. Mol Cell Neurosci 19:250–262

    Article  PubMed  Google Scholar 

  • Jannini EA, Olivieri M, Francavilla S, Gulino A, Ziparo E, D’Armiento M (1990) Ontogenesis of the nuclear 3,5,3′-triiodothyronine receptor in the rat testis. Endocrinology 126:2521–2526

    PubMed  Google Scholar 

  • Jannini EA, Dolci S, Ulisse S, Nikodem VM (1994) Developmental regulation of the thyroid hormone receptor alpha 1 mRNA expression in the rat testis. Mol Endocrinol 8:89–96

    Article  PubMed  Google Scholar 

  • Jannini EA, Ulisse S, D’Armiento M (1995) Thyroid hormone and male gonadal function. Endocr Rev 16:443–459

    Article  PubMed  Google Scholar 

  • Joyce KL, Porcelli J, Cooke PS (1993) Neonatal goitrogen treatment increases adult testis size and sperm production in the mouse. J Androl 14:448–455

    PubMed  Google Scholar 

  • Kirby JD, Jetton AE, Cooke PS, Hess RA, Bunick D, Ackland JF, Turek FW, Schwartz NB (1992) Developmental hormonal profiles accompanying the neonatal hypothyroidism-induced increase in adult testicular size and sperm production in the rat. Endocrinology 131:559–565

    Article  PubMed  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85:721–732

    Article  PubMed  Google Scholar 

  • Krishnamurthy H, Danilovich N, Morales CR, Sairam MR (2000) Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biol Reprod 62:1146–1159

    Article  PubMed  Google Scholar 

  • Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201–204

    Article  PubMed  Google Scholar 

  • Mackay S (2000) Gonadal development in mammals at the cellular and molecular levels. Int Rev Cytol 200:47–99

    Article  PubMed  Google Scholar 

  • Maran RR, Ravichandran K, Arunakaran J, Aruldhas MM (2001) Impact of neonatal hypothyroidism on Leydig cell number, plasma, and testicular interstitial fluid sex steroids concentration. Endocr Res 27:119–141

    PubMed  Google Scholar 

  • Marshall GR, Plant TM (1996) Puberty occurring either spontaneously or induced precociously in rhesus monkey (Macaca mulatta) is associated with a marked proliferation of Sertoli cells. Biol Reprod 54:1192–1199

    Article  PubMed  Google Scholar 

  • McCoard SA, Wise TH, Ford JJ (2003) Endocrine and molecular influences on testicular development in Meishan and white composite boars. J Endocrinol 178:405–416

    PubMed  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY (1996) Mice lacking p27 Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    Article  PubMed  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Hatakeyama S (2000) Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19:2069–2081

    Article  PubMed  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, Natsume T, Nakayama KI (2004) Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6:661–672

    Article  PubMed  Google Scholar 

  • O’Shea PJ, Williams GR (2002) Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 175:553–570

    Article  PubMed  Google Scholar 

  • Oppenheimer JH, Schwartz HL, Surks MI (1974) Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology 95:897–903

    PubMed  Google Scholar 

  • Orth JM (1982) Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 203:485–492

    Article  PubMed  Google Scholar 

  • Palmero S, Maggiani S, Fugassa E (1988) Nuclear triiodothyronine receptors in rat Sertoli cells. Mol Cell Endocrinol 58:253–256

    Article  PubMed  Google Scholar 

  • Palmero S, Marchis M de, Gallo G, Fugassa E (1989) Thyroid hormone affects the development of Sertoli cell function in the rat. J Endocrinol 123:105–111

    PubMed  Google Scholar 

  • Palmero S, De Marco P, Fugassa E (1995a) Thyroid hormone receptor beta mRNA expression in Sertoli cells isolated from prepubertal testis. J Mol Endocrinol 14:131–134

    PubMed  Google Scholar 

  • Palmero S, Prati M, Bolla F, Fugassa E (1995b) Tri-iodothyronine directly affects rat Sertoli cell proliferation and differentiation. J Endocrinol 145:355–362

    PubMed  Google Scholar 

  • Perez-Juste G, Aranda A (1999) The cyclin-dependent kinase inhibitor p27(Kip1) is involved in thyroid hormone-mediated neuronal differentiation. J Biol Chem 274:5026–5031

    Article  PubMed  Google Scholar 

  • Pibiri M, Ledda-Columbano GM, Cossu C, Simbula G, Menegazzi M, Shinozuka H, Columbano A (2001) Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3). FASEB J 15:1006–1013

    Article  PubMed  Google Scholar 

  • Poguet AL, Legrand C, Feng X, Yen PM, Meltzer P, Samarut J, Flamant F (2003) Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol 254:188–199

    Article  PubMed  Google Scholar 

  • Sharpe RM, Walker M, Millar MR, Atanassova N, Morris K, McKinnell C, Saunders PT, Fraser HM (2000) Effect of neonatal gonadotropin-releasing hormone antagonist administration on Sertoli cell number and testicular development in the marmoset: comparison with the rat. Biol Reprod 62:1685–1693

    Article  PubMed  Google Scholar 

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1:207–214

    PubMed  Google Scholar 

  • Tokumoto YM, Durand B, Raff MC (1999) An analysis of the early events when oligodendrocyte precursor cells are triggered to differentiate by thyroid hormone, retinoic acid, or PDGF withdrawal. Dev Biol 213:327–339

    Article  PubMed  Google Scholar 

  • Tokumoto YM, Apperly JA, Gao FB, Raff MC (2002) Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev Biol 245:224–234

    Article  PubMed  Google Scholar 

  • Toppari J, Suominenf JS, Yan W (2003) The role of retinoblastoma protein family in the control of germ cell proliferation, differentiation and survival. Apmis 111:245–251

    Article  PubMed  Google Scholar 

  • Van Haaster LH, De Jong FH, Docter R, De Rooij DG (1992) The effect of hypothyroidism on Sertoli cell proliferation and differentiation and hormone levels during testicular development in the rat. Endocrinology 131:1574–1576

    Article  PubMed  Google Scholar 

  • Weissman AM (1997) Regulating protein degradation by ubiquitination. Immunol Today 18:189–198

    Article  PubMed  Google Scholar 

  • Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thoren P, Vennstrom B (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461

    Article  PubMed  Google Scholar 

  • Willems AR, Lanker S, Patton EE, Craig KL, Nason TF, Mathias N, Kobayashi R, Wittenberg C, Tyers M (1996) Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86:453–463

    PubMed  Google Scholar 

  • Yan W, Kero J, Suominen J, Toppari J (2001) Differential expression and regulation of the retinoblastoma family of proteins during testicular development and spermatogenesis: roles in the control of germ cell proliferation, differentiation and apoptosis. Oncogene 20:1343–1356

    Article  PubMed  Google Scholar 

  • Yu ZK, Gervais JL, Zhang H (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 95:11324–11329

    Article  PubMed  Google Scholar 

  • Zhang H, Kobayashi R, Galaktionov K, Beach D (1995) p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82:915–925

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sarah Kiesewetter for assistance with figures and Melissa Zakroczymski for help with manuscript submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Cooke.

Additional information

We gratefully acknowledge the support of this work by the NIH, USDA, the University of Illinois, the Lalor Foundation, and the Thanis A. Field Endowment at the University of Illinois. D.R. Holsberger was supported by postdoctoral fellowships from the Lalor Foundation and Reproductive Biology Research Training Program (NIH grant T32 HD07028), University of Illinois at Urbana–Champaign.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holsberger, D.R., Cooke, P.S. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res 322, 133–140 (2005). https://doi.org/10.1007/s00441-005-1082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1082-z

Navigation