Skip to main content
Log in

Members of the CDY family have different expression patterns: CDY1 transcripts have the best correlation with complete spermatogenesis

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2003

Abstract

The CDY family of genes is of special interest because some of them are included in chromosome-Y microdeletions detected among infertile men and are apparently involved in the spermiogenetic process. In this study, we employed the reverse transcriptase/polymerase chain reaction technique to test the RNA expression of the various transcripts of these genes in testicular biopsies of 84 azoospermic men who had been classified by comprehensive histology and cytology analyses. We also evaluated the feasibility of detecting CDY expression in biopsies taken by testicular sperm extraction versus acquisition by aspiration. There was a significant association between the type of testicular impairment and the expression of CDY1 and CDY2 transcripts. CDY2 was expressed whenever germ cells were present, but CDY1 major and especially CDY1 minor and short transcripts were identified almost exclusively when mature spermatids/spermatozoa were detected. The expression of CDY1 minor and short transcripts detected in aspirated specimens was less efficient than that in testicular tissue acquired by extraction. It is sugested that CDY2 is apparently required in the early stages of spermatogenesis, whereas CDY1 transcripts are required later on in the process. The findings of this study imply different functional roles for CDY isoforms during spermatogenesis. However, in consideration of the high levels of identity between CDY1 and CDY2 (98% at the protein level), the delayed up-regulation of CDY1 transcripts could be attributable to temporal changes in dosage requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3A–E.

Similar content being viewed by others

References

  • Bar-Shira Maymon B, Elliott DJ, Kleiman SE, Yogev L, Hauser R, Botchan A, Schreiber L, Cooke HJ, Paz G, Yavetz H (2001) The contribution of RNA-binding motif (RBM) antibody to the histopathologic evaluation of testicular biopsies from infertile men. Hum Pathol 32:36–41

    Article  PubMed  Google Scholar 

  • Ben-Yosef D, Yogev L, Hauser R, Hauser R, Yavetz H, Azem F, Yovel I, Lessing JB, Amit A (1999) Testicular sperm retrieval and cryopreservation prior to initiating ovarian stimulation as the first line approach in men with non-obstructive azoospermia. Hum Reprod 14:1794–1801

    Article  CAS  PubMed  Google Scholar 

  • Eddy EM (1998) Regulation of gene expression during spermatogenesis. Semin Cell Dev Biol 9:451–457

    Article  CAS  PubMed  Google Scholar 

  • Edwards RG, Bishop CE (1997) On the origin and frequency of the Y chromosome deletions responsible for severe male infertility. Mol Hum Reprod 3:549–554

    CAS  PubMed  Google Scholar 

  • Elliott DJ, Oghene K, Makarov G, Makarova O, Hargreave TB, Chandley AC, Eperon IC, Cooke HJ (1998) Dynamic changes in the subnuclear organization of pre-mRNA splicing proteins and RBM during human germ cell development. J Cell Science 111:1255–1265

    CAS  PubMed  Google Scholar 

  • Elliott DJ, Bourgeois CF, Klink A, Stevenin J, Cooke HJ (2000) A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection. Proc Natl Acad Sci USA 97:5717–5722

    Article  CAS  PubMed  Google Scholar 

  • Ezeh UI, Moore HD, Cooke ID (1998) A prospective study of multiple needle biopsies versus a single open biopsy for testicular sperm extraction in men with non-obstructive azoospermia. Hum Reprod 13:3075–3080

    Article  CAS  PubMed  Google Scholar 

  • Friedler S, Raziel A, Strassburger D, Soffer Y, Komarovsky D, Ron-El R (1997) Testicular sperm retrieval by percutaneous fine needle sperm aspiration compared with testicular sperm extraction by open biopsy in men with non-obstructive azoospermia. Hum Reprod 12:1488–1493

    Article  CAS  PubMed  Google Scholar 

  • Hauser R, Botchan A, Amit A, Ben Yosef D, Gamzu R, Paz G, Lessing JB, Yogev L, Yavetz H (1998) Multiple testicular sampling in non-obstructive azoospermia—is it necessary? Hum Reprod 13:3081–3085

    Article  CAS  PubMed  Google Scholar 

  • Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960

    CAS  PubMed  Google Scholar 

  • Kleene KC (2001) A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 106:3–23

    Article  CAS  PubMed  Google Scholar 

  • Kleiman SE, Yogev L, Gamzu R, Hauser R, Botchan A, Lessing JB, Paz G, Yavetz H (1999) Genetic evaluation of infertile men. Hum Reprod 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Kleiman SE, Lagziel A, Yogev L, Botchan A, Paz G, Yavetz H (2001) Expression of CDY1 may identify complete spermatogenesis. Fertil Steril 75:166–173

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, K, Mizuno K, Hida A, Komaki R, Tomita K, Matsushita I, Namiki M, Iwamoto T, Tamura S, Minowada S (1994) PCR analysis of the Y chromosome long arm in azoospermic patients: evidence for a second locus required for spermatogenesis. Hum Mol Genet 3:1965–1967

    CAS  PubMed  Google Scholar 

  • Kostova E, Rottger S, Schempp W, Gromoll J (2002) Identification and characterization of the cynomolgus monkey chromodomain gene cynCDY, an orthologue of the human CDY gene family. Mol Hum Reprod 8:702–709

    Article  CAS  PubMed  Google Scholar 

  • Kuroda-Kawaguchi T, Skaletsky H, Brown LG, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Silber S, Oates R, Rozen S, Page DC (2001) The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 29:279–286

    Article  CAS  PubMed  Google Scholar 

  • Lahn BT, Page DC (1997) Functional coherence of the human Y chromosome. Science 278:675–680

    Article  CAS  PubMed  Google Scholar 

  • Lahn BT, Page DC (1999) Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat Genet 21:429–433

    Article  CAS  PubMed  Google Scholar 

  • Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA 99:8707–8712

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee DR, Yoon SJ, Chai YG, Roh SI, Yoon HS (1998) Expression of DAZ (deleted in azoospermia), DAZL1 (DAZ-like) and protamine-2 in testis and its application for diagnosis of spermatogenesis in non-obstructive azoospermia. Mol Hum Reprod 4:827–834

    Article  CAS  PubMed  Google Scholar 

  • Lewin A, Reubinoff B, Porat-Katz A, Weiss D, Eisenberg V, Arbel R, Bar-el H, Safran A (1999) Testicular fine needle aspiration: the alternative method for sperm retrieval in non-obstructive azoospermia Hum Reprod 14:1785–1790

    Google Scholar 

  • Ma K, Inglis JD, Sharkey A, Bickmore WA, Hill RE, Prosser EJ, Speed RM, Thomson EJ, Jobling M, Taylor K (1993) A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 75:1287–1295

    PubMed  Google Scholar 

  • Menke DB, Mutter GL, Page DC (1997) Expression of DAZ, an azoospermia factor candidate, in human spermatogonia. Am J Hum Genet 60:237–241

    CAS  PubMed  Google Scholar 

  • Meistrich ML, Trostle-Weiga PK, Lin R, Bhatnagar YM, Allis CD (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31:170–181

    CAS  PubMed  Google Scholar 

  • Oates RD, Silber S, Brown LG, Page DC. (2002) Clinical characterization of 42 oligospermic or azoospermic men with microdeletion of the AZFc region of the Y chromosome, and of 18 children conceived via ICSI. Hum Reprod 17:2813–2824

    Article  CAS  PubMed  Google Scholar 

  • Pryor JL, Kent-First M, Muallem A, Van Bergen AH, Nolten WE, Meisner L, Roberts KP (1997) Microdeletions in the Y chromosome of infertile men. N Engl J Med 336:534–539

    Article  CAS  PubMed  Google Scholar 

  • Reijo R, Lee TY, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, Chapelle A de la, Silver S, Page DC (1995) Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 10:383–392

    PubMed  Google Scholar 

  • Repping S, Skaletsky H, Lange J, Silber S, Van Der Veen F, Oates RD, Page DC, Rozen S (2002) Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 71:906–922

    Article  PubMed  Google Scholar 

  • Schrader M, Muller M, Schulze W, Heicappell R, Krause H, Straub B, Miller K (2002a) Quantification of the expression level of the gene encoding the catalytic subunit of telomerase in testicular tissue specimens predicts successful sperm recovery. Hum Reprod 17:150–156

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Muller-Tidow C, Ravnik S, Muller M, Schulze W, Diederichs S, Serve H, Miller K (2002b) Cyclin A1 and gametogenesis in fertile and infertile patients: a potential new molecular diagnostic marker. Hum Reprod 17:2338–2343

    Article  CAS  PubMed  Google Scholar 

  • Silber SJ, Nagy S, Devroey P, Tournaye H, Van Steirteghem AC (1997) Distribution of spermatogenesis in the testicles of azoospermic men: the presence or absence of spermatids in the testes of men with germinal failure. Hum Reprod 12:2422–2428

    PubMed  Google Scholar 

  • Tiepolo L, Zuffardi O (1976) Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet 34:119–124

    CAS  PubMed  Google Scholar 

  • Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F, Kohn FM, Schill WB, Farah S, Ramos C, Hartmann M, Hartschuh W, Meschede D, Behre HM, Castel A, Nieschlag E, Weidner W, Grone HJ, Jung A, Engel W, Haidl G (1996) Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet 5:933–943

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Tovi Morad for her excellent technical assistance, Esther Eshkol for editorial assistance, and Ilana Galernter (Statistical Department, Tel Aviv University) for expert statistical analysis. The Chief Scientific Office, Ministry of Health, Israel (grant no. 4823) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra E. Kleiman.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00439-003-1067-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleiman, S.E., Yogev, L., Hauser, R. et al. Members of the CDY family have different expression patterns: CDY1 transcripts have the best correlation with complete spermatogenesis. Hum Genet 113, 486–492 (2003). https://doi.org/10.1007/s00439-003-0990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-0990-9

Keywords

Navigation