Skip to main content
Log in

Public and private mechanisms of life extension in Caenorhabditis elegans

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams TE, Epa VC, Garrett TP, Ward CW (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57:1050–1093

    PubMed  CAS  Google Scholar 

  • Ailion M, Thomas JH (2000) Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics 156:1047–1067

    PubMed  CAS  Google Scholar 

  • Ailion M, Thomas JH (2003) Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans. Genetics 165:127–144

    PubMed  CAS  Google Scholar 

  • Ailion M, Inoue T, Weaver CI, Holdcraft RW, Thomas JH (1999) Neurosecretory control of aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 96:7394–7397

    PubMed  CAS  Google Scholar 

  • Alcedo J, Kenyon C (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41:45–55

    PubMed  CAS  Google Scholar 

  • Ambros V (2000) Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev 10:428–433

    PubMed  CAS  Google Scholar 

  • Anderson GL (1982) Superoxide-dismutase activity in Dauerlarvae of Caenorhabditis elegans (Nematoda, Rhabditidae). Can J Zool Revue Canadienne De Zoologie 60:288–291

    CAS  Google Scholar 

  • Anderson GL, Dusenbery DB (1977) Critical oxygen-tension of Caenorhabditis elegans. J Nematol 9:253–254

    PubMed  CAS  Google Scholar 

  • Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL (2000) Daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14:1512–1527

    PubMed  CAS  Google Scholar 

  • Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95:199–210

    PubMed  CAS  Google Scholar 

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    PubMed  CAS  Google Scholar 

  • Apfeld J, O’connor G, Mcdonagh T, Distefano PS, Curtis R (2004) The amp-activated protein kinase Aak-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    PubMed  CAS  Google Scholar 

  • Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295:502–505

    PubMed  CAS  Google Scholar 

  • Arantes-Oliveira N, Berman JR, Kenyon C (2003) Healthy animals with extreme longevity. Science 302:611

    PubMed  CAS  Google Scholar 

  • Arkblad EL, Tuck S, Pestov NB, Dmitriev RI, Kostina MB, Stenvall J, Tranberg M, Rydström J (2005) A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free Radic Biol Med 38:1518–1525

    PubMed  CAS  Google Scholar 

  • Asaumi S, Kuroyanagi H, Seki N, Shirasawa T (1999) Orthologues of the Caenorhabditis elegans longevity gene clk-1 in mouse and human. Genomics 58:293–301

    PubMed  CAS  Google Scholar 

  • Babar P, Adamson C, Walker GA, Walker DW, Lithgow GJ (1999) P13-kinase inhibition induces dauer formation, thermotolerance and longevity in C. elegans. Neurobiol Aging 20:513–519

    PubMed  CAS  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 854:224–238

    PubMed  CAS  Google Scholar 

  • Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15:627–634

    PubMed  CAS  Google Scholar 

  • Baudry M, Etienne S, Bruce A, Palucki M, Jacobsen E, Malfroy B (1993) Salen-manganese complexes are superoxide dismutase-mimics. Biochem Biophys Res Commun 192:964–968

    PubMed  CAS  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans Sir-2.1 interacts with 14-3-3 proteins to activate Daf-16 and extend life span. Cell 125:1165–1177

    PubMed  CAS  Google Scholar 

  • Berman JR, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of Daf-16 by Kri-1 and lipophilic-hormone signaling. Cell 124:1055–1068

    PubMed  CAS  Google Scholar 

  • Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH (2000) A transmembrane Guanylyl Cyclase (Daf-11) and Hsp90 (Daf-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104

    PubMed  CAS  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    PubMed  Google Scholar 

  • Boehm M, Slack F (2005) A developmental timing microrna and its target regulate life span in C. elegans. Science 310:1954–1957

    PubMed  CAS  Google Scholar 

  • Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826

    PubMed  CAS  Google Scholar 

  • Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15:279–295

    PubMed  CAS  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195

    PubMed  CAS  Google Scholar 

  • Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR (1999) Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol 9:493–496

    PubMed  CAS  Google Scholar 

  • Braeckman BP, Houthoofd K, Vanfleteren JR (2002a) Assessing metabolic activity in aging Caenorhabditis elegans: concepts and controversies. Aging Cell 1:82–88

    CAS  Google Scholar 

  • Braeckman BP, Houthoofd K, Vanfleteren JR (2002b) Rebuttal to Van Voorhies: the influence of metabolic rate on longevity in the nematode Caenorhabditis elegans. Aging Cell 1:89–90

    CAS  Google Scholar 

  • Braeckman BP et al (2002c) No reduction of energy metabolism in Clk mutants. Mech Ageing Dev 123:1447–56

    CAS  Google Scholar 

  • Branicky R, Shibata Y, Feng J, Hekimi S (2001) Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics 159:997–1006

    PubMed  CAS  Google Scholar 

  • Brooks A, Lithgow GJ, Johnson TE (1994) Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 263:668–671

    PubMed  CAS  Google Scholar 

  • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 102:3105–3110

    PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    PubMed  CAS  Google Scholar 

  • Burnell AM, Houthoofd K, O’hanlon K, Vanfleteren JR (2005) Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Exp Gerontol 40:850–856

    PubMed  CAS  Google Scholar 

  • Butov A et al (2001) Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between cell damage and HSP levels. Exp Gerontol 37:57–66

    PubMed  CAS  Google Scholar 

  • Cahill CM et al (2001) Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276:13402–13410

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA, Holland CD (1999) Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Anal 19:261–281

    PubMed  CAS  Google Scholar 

  • Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46:326–342

    PubMed  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    PubMed  CAS  Google Scholar 

  • Cherkasova V, Ayyadevara S, Egilmez N, Reis RS (2000) Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J Mol Biol 300:433–448

    PubMed  CAS  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    PubMed  CAS  Google Scholar 

  • Clokey GV, Jacobson LA (1986) The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev 35:79–94

    PubMed  CAS  Google Scholar 

  • Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144:3799–3810

    PubMed  CAS  Google Scholar 

  • Croll NA, Smith JM, Zuckerman BM (1977) The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Exp Aging Res 3:175–189

    PubMed  CAS  Google Scholar 

  • Cypser J, Johnson TE (2001) Hormesis extends the correlation between stress resistance and life span in long-lived mutants of Caenorhabditis elegans. Hum Exp Toxicol 20:295–296

    PubMed  CAS  Google Scholar 

  • Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57:B109–B114

    PubMed  Google Scholar 

  • Cypser JR, Johnson TE (2003) Hormesis in Caenorhabditis elegans dauer-defective mutants. Biogerontology 4:203–214

    PubMed  CAS  Google Scholar 

  • Cypser JR, Tedesco P, Johnson TE (2006) Hormesis and aging in Caenorhabditis elegans. Exp Gerontol [Epub ahead of print]

  • Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A (2004) Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101:10042–10047

    PubMed  CAS  Google Scholar 

  • Davis BO, Anderson GL, Dusenbery DB (1982) Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 21:4089–4095

    PubMed  CAS  Google Scholar 

  • Dillin A et al (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    PubMed  CAS  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141:1399–1406

    PubMed  CAS  Google Scholar 

  • Duhon SA, Johnson TE (1995) Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 50:B254–B261

    PubMed  CAS  Google Scholar 

  • Duret L, Guex N, Peitsch MC, Bairoch A (1998) New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res 8:348–353

    PubMed  CAS  Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275:980–983

    PubMed  CAS  Google Scholar 

  • Fabian TJ, Johnson TE (1995) Identification genes that are differentially expressed during aging in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 50:B245–B253

    PubMed  CAS  Google Scholar 

  • Fei YJ, Fujita T, Lapp DF, Ganapathy V, Leibach FH (1998) Two oligopeptide transporters from Caenorhabditis elegans: molecular cloning and functional expression. Biochem J 332:565–572

    PubMed  CAS  Google Scholar 

  • Fei YJ, Inoue K, Ganapathy V (2003) Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278:6136–6144

    PubMed  CAS  Google Scholar 

  • Fei YJ et al (2004) Relevance of Nac-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Biochem J 379:191–198

    PubMed  CAS  Google Scholar 

  • Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18:1783–1792

    PubMed  CAS  Google Scholar 

  • Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    PubMed  CAS  Google Scholar 

  • Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago, pp 498–503

    Google Scholar 

  • Finlayson CA, Chappell J, Leitner JW, Goalstone ML, Garrity M, Nawaz S, Ciaraldi TP, Draznin B (2003) Enhanced insulin signaling via Shc in human breast cancer. Metabolism 52:1606–1611

    PubMed  CAS  Google Scholar 

  • Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130

    PubMed  CAS  Google Scholar 

  • Foll RL, Pleyers A, Lewandovski GJ, Wermter C, Hegemann V, Paul RJ (1999) Anaerobiosis in the nematode Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol 124:269–280

    PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988a) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988b) Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 43:B102–B109

    CAS  Google Scholar 

  • Fujii M, Ishii N, Joguchi A, Yasuda K, Ayusawa D (1998) A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res 5:25–30

    PubMed  CAS  Google Scholar 

  • Furuyama T, Nakazawa T, Nakano I, Mori N (2000) Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349:629–634

    PubMed  CAS  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans. A role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    PubMed  CAS  Google Scholar 

  • Gems D, Mcelwee JJ (2005) Broad spectrum detoxification: the major longevity assurance process regulated by insulin/Igf-1 signaling? Mech Ageing Dev 126:381–387

    PubMed  CAS  Google Scholar 

  • Gems D, Riddle DL (2000) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154:1597–1610

    PubMed  CAS  Google Scholar 

  • Gems D et al (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150:129–155

    PubMed  CAS  Google Scholar 

  • Gerisch B, Antebi A (2004) Hormonal signals produced by Daf-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 131:1765–1776

    PubMed  CAS  Google Scholar 

  • Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1:841–851

    PubMed  CAS  Google Scholar 

  • Giannakou ME, Goss M, Jünger MA, Hafen E, Leevers SJ, Partridge L (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305:361

    PubMed  CAS  Google Scholar 

  • Giglio AM, Hunter T, Bannister JV, Bannister WH, Hunter GJ (1994a) The copper/zinc superoxide dismutase gene of Caenorhabditis elegans. Biochem Mol Biol Int 33:41–44

    CAS  Google Scholar 

  • Giglio MP, Hunter T, Bannister JV, Bannister WH, Hunter GJ (1994b) The manganese superoxide dismutase gene of Caenorhabditis elegans. Biochem Mol Biol Int 33:37–40

    CAS  Google Scholar 

  • Gil EB, Malone Link E, Liu LX, Johnson CD, Lees JA (1999) Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci USA 96:2925–2930

    PubMed  CAS  Google Scholar 

  • Golden JW, Riddle DL (1982) A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218:578–580

    PubMed  CAS  Google Scholar 

  • Golden JW, Riddle DL (1984a) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 102:368–378

    CAS  Google Scholar 

  • Golden JW, Riddle DL (1984b) A pheromone-induced developmental switch in Caenorhabditis elegans: temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci USA 81:819–823

    CAS  Google Scholar 

  • Golden JW, Riddle DL (1985) A gene affecting production of the Caenorhabditis elegans dauer- inducing pheromone. Mol Gen Genet 198:534–536

    PubMed  CAS  Google Scholar 

  • Gorbunova V, Seluanov A (2002) CLK-1 protein has DNA binding activity specific to O(L) region of mitochondrial DNA. FEBS Lett 516:279–284

    PubMed  CAS  Google Scholar 

  • Gregoire FM, Chomiki N, Kachinskas D, Warden CH (1998) Cloning and developmental regulation of a novel member of the insulin-like gene family in Caenorhabditis elegans. Biochem Biophys Res Commun 249:385–390

    PubMed  CAS  Google Scholar 

  • Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275:27354–27359

    PubMed  CAS  Google Scholar 

  • Gupta SK, Rothstein M (1976a) Phosphoglycerate kinase from young and old Turbatrix aceti. Biochim Biophys Acta 445:632–644

    CAS  Google Scholar 

  • Gupta SK, Rothstein M (1976b) Triosephosphate isomerase from young and old turbatrix-aceti. Arch Biochem Biophys 174:333–338

    CAS  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    PubMed  CAS  Google Scholar 

  • Hamilton B et al (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    PubMed  CAS  Google Scholar 

  • Hansen E, Buecher EJ, Yarwood EA (1964) Development and maturation of Caenorhabditis briggsae in response to growth factor. Nematologica 10:623–630

    Article  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    PubMed  CAS  Google Scholar 

  • Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–1119

    PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    PubMed  CAS  Google Scholar 

  • Hekimi S, Boutis P, Lakowski B (1995) Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics 141:1351–1364

    PubMed  CAS  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    PubMed  CAS  Google Scholar 

  • Henderson ST, Bonafe M, Johnson TE (2006) daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci 61:444–460

    PubMed  Google Scholar 

  • Herndon LA et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814

    PubMed  CAS  Google Scholar 

  • Hertweck M, Gobel C, Baumeister R (2004) C. elegans Sgk-1 is the critical component in the Akt/Pkb kinase complex to control stress response and life span. Dev Cell 6:577–588

    PubMed  CAS  Google Scholar 

  • Hihi AK, Gao Y, Hekimi S (2002) Ubiquinone is necessary for Caenorhabditis elegans development at mitochondrial and non-mitochondrial sites. J Biol Chem 277:2202–2206

    PubMed  CAS  Google Scholar 

  • Himmelhoch S, Zuckerman BM (1978) Caenorhabditis Briggsae—aging and structural turnover of outer cuticle surface and intestine. Exp Parasitol 45:208–214

    PubMed  CAS  Google Scholar 

  • Himmelhoch S, Kisiel MJ, Zuckerman BM (1977) Caenorhabditis Briggsae: electron microscope analysis of changes in negative surface charge density of outer cuticular membrane. Exp Parasitol 41:118–123

    PubMed  CAS  Google Scholar 

  • Holt SJ, Riddle DL (2003) Sage surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mech Ageing Dev 124:779–800

    PubMed  CAS  Google Scholar 

  • Holzenberger M et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    PubMed  CAS  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393

    PubMed  CAS  Google Scholar 

  • Honda Y, Honda S (2002) Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 959:466–474

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa H, Ishii N, Ishida H, Ichimori K, Nakazawa H, Suzuki K (1994) Rapid accumulation of fluorescent material with aging in an oxygen- sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74:161–170

    PubMed  CAS  Google Scholar 

  • Hosono R (1978) Age dependent changes in the behavior of Caenorhabditis elegans on attraction to Escherichia coli. Exp Gerontol 13:31–36

    PubMed  CAS  Google Scholar 

  • Hosono R, Nishimoto S, Kuno S (1989) Alterations of life-span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp Gerontol 24:251–264

    PubMed  CAS  Google Scholar 

  • Houthoofd K et al (2002a) Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp Gerontol 37:1015–1021

    CAS  Google Scholar 

  • Houthoofd K et al (2002b) No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 37:1359–1369

    Google Scholar 

  • Houthoofd K et al (2002c) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37:1371–1378

    Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/Igf-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Vanfleteren JR (2004a) The hunt for the record life span in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 59:408–410

    Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2004b) Extending life-span in C. elegans. Science 305:1238–1239

    CAS  Google Scholar 

  • Houthoofd K et al (2005a) Metabolism, physiology and stress defense in three aging Ins/Igf-1 mutants of the nematode Caenorhabditis elegans. Aging Cell 4:87–95

    CAS  Google Scholar 

  • Houthoofd K et al (2005b) Daf-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism. Neurobiol Aging 26:689–696

    CAS  Google Scholar 

  • Houthoofd K, Johnson TE, Vanfleteren JR (2005c) Dietary restriction in the nematode Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 60:1125–1131

    Google Scholar 

  • Houthoofd K, Gems D, Johnson TE, Vanfleteren JR (2007) Dietary restriction in the nematode Caenorhabditis elegans. In: Mobbs CV, Yen K, Hof PR (eds) Mechanisms of dietary restriction in aging and disease. Interdisciplinary topics in gerontology. Karger, Basel 35:98–114

  • Howitz KT et al (2003) Small molecule activators of sirtuins extend Saccharomyces Cerevisiae lifespan. Nature 425:191–196

    PubMed  CAS  Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    PubMed  CAS  Google Scholar 

  • Hua QX et al (2003) A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev 17:826–831

    PubMed  CAS  Google Scholar 

  • Hunter T, Bannister WH, Hunter GJ (1997) Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J Biol Chem 272:28652–28659

    PubMed  CAS  Google Scholar 

  • Hwangbo DS, Gersham B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    PubMed  CAS  Google Scholar 

  • Inoue T, Thomas JH (2000) Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics 156:1035–1046

    PubMed  CAS  Google Scholar 

  • Ishii N, Takahashi K, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K (1990) A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 237:165–171

    PubMed  CAS  Google Scholar 

  • Ishii N et al (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    PubMed  CAS  Google Scholar 

  • Jeong PY et al (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–545

    PubMed  CAS  Google Scholar 

  • Jiang H, Guo R, Powell-Coffman JA (2001) The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98:7916–7921

    PubMed  CAS  Google Scholar 

  • Jia K, Albert PS, Riddle DL (2002) DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129:221–231

    PubMed  CAS  Google Scholar 

  • Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    PubMed  CAS  Google Scholar 

  • Johnson TE (1987) Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci USA 84:3777–3781

    PubMed  CAS  Google Scholar 

  • Johnson TE (1990) Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249:908–912

    PubMed  CAS  Google Scholar 

  • Johnson TE, Mccaffrey G (1985) Programmed aging or error catastrophe—an examination by two-dimensional polyacrylamide-gel electrophoresis. Mech Ageing Dev 30:285–297

    PubMed  CAS  Google Scholar 

  • Johnson TE, Lithgow GJ, Murakami S (1996) Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol A Biol Sci Med Sci 51:B392–B395

    PubMed  CAS  Google Scholar 

  • Johnson TE et al (2000) Gerontogenes mediate health and longevity in nematodes through increasing resistance to environmental toxins and stressors. Exp Gerontol 35:687–694

    PubMed  CAS  Google Scholar 

  • Johnson TE, de Castro E, Hegi de Castro S, Cypser J, Henderson S, Tedesco P (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36:1609–1617

    PubMed  CAS  Google Scholar 

  • Johnson TE et al (2002) Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25:197–206

    PubMed  CAS  Google Scholar 

  • Jonassen T, Larsen PL, Clarke CF (2001) A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans Clk-1 mutants. Proc Natl Acad Sci USA 98:421–426

    PubMed  CAS  Google Scholar 

  • Jonassen T, Marbois BN, Faull KF, Clarke CF, Larsen PL (2002) Development and fertility in Caenorhabditis elegans clk-1 mutants depend upon transport of dietary coenzyme Q8 to mitochondria. J Biol Chem 277:45020–45027

    PubMed  CAS  Google Scholar 

  • Jones SJ et al (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res 11:1346–1352

    PubMed  CAS  Google Scholar 

  • Junger MA, Rintelen F, Stocker H, Wasserman JD, Vegh M, Radimerski T, Greenberg ME, Hafen E (2003) The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2:20

    PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    PubMed  CAS  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:1381–1387

    CAS  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280:17038–17045

    PubMed  CAS  Google Scholar 

  • Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell [Epub ahead of print]

  • Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, Kimura Y (2000) Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 273:431–436

    PubMed  CAS  Google Scholar 

  • Kayser EB, Morgan PG, Sedensky MM (1999) GAS-1: a mitochondrial protein controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. Anesthesiology 90:545–554

    PubMed  CAS  Google Scholar 

  • Kayser EB, Morgan PG, Hoppel CL, Sedensky MM (2001) Mitochondrial expression and function of Gas-1 in Caenorhabditis elegans. J Biol Chem 276:20551–20558

    PubMed  CAS  Google Scholar 

  • Kayser EB, Sedensky MM, Morgan PG (2004) The effects of complex i function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 125:455–464

    PubMed  CAS  Google Scholar 

  • Keaney M, Gems D (2003) No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Radic Biol Med 34:277–282

    PubMed  CAS  Google Scholar 

  • Keaney M, Matthijssens F, Sharpe M, Vanfleteren J, Gems D (2004) Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free Radic Biol Med 37:239–250

    PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    PubMed  CAS  Google Scholar 

  • Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW (1997) Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. J Gerontol A Biol Sci Med Sci 52:B48–B52

    PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    PubMed  CAS  Google Scholar 

  • Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8:65–79

    PubMed  CAS  Google Scholar 

  • Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238

    PubMed  CAS  Google Scholar 

  • Kisiel MJ, Zuckerman BM (1974) Studies on aging of Turbatrix-Aceti. Nematologica 20:277–282

    Article  Google Scholar 

  • Kisiel MJ, Castillo JM, Zuckerman LS, Zuckerman BM, Himmelhoch S (1975) Studies on aging in Turbatrix-Aceti. Mech Ageing Dev 4:81–88

    PubMed  CAS  Google Scholar 

  • Klass MR (1977) Aging in nematode Caenorhabditis elegans—major biological and environmental factors influencing life-span. Mech Ageing Dev 6:413–429

    PubMed  CAS  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22:279–286

    PubMed  CAS  Google Scholar 

  • Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525

    PubMed  CAS  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368:545–553

    PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013

    PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    PubMed  CAS  Google Scholar 

  • Lamitina ST, Strange K (2005) Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Am J Physiol Cell Physiol 288:C467–C474

    PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:8905–8909

    PubMed  CAS  Google Scholar 

  • Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295:120–123

    PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583

    PubMed  CAS  Google Scholar 

  • Le Bourg E, Minois N, Bullens P, Baret P (2000) A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology 1:145–155

    PubMed  CAS  Google Scholar 

  • Lee RYN, Hench J, Ruvkun G (2001) Regulation of C. elegans Daf-16 and its human ortholog Fkhrl1 by the Daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957

    PubMed  CAS  Google Scholar 

  • Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003a) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647

    CAS  Google Scholar 

  • Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003b) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    CAS  Google Scholar 

  • Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, Zou S (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell [Epub ahead of print]

  • Levavasseur F et al (2001) Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration. J Biol Chem 276:46160–46164

    PubMed  CAS  Google Scholar 

  • Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 17:844–858

    PubMed  CAS  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans Daf-16 in the regulation of lifespan. Cell 115:489–502

    PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    PubMed  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    PubMed  CAS  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    PubMed  CAS  Google Scholar 

  • Lithgow GJ, Walker GA (2002) Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev 123:765–771

    PubMed  Google Scholar 

  • Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 49:B270–B276

    PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92:7540–7544

    PubMed  CAS  Google Scholar 

  • Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19:2424–2434

    PubMed  CAS  Google Scholar 

  • Loeb J, Northrop JH (1917) On the influence of food and temperature upon the duration, of life. J Biol Chem 32:102–121

    Google Scholar 

  • Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE (2002) Transcriptional profile of aging in C. elegans. Curr Biol 12:1566–1573

    PubMed  CAS  Google Scholar 

  • Malone EA, Inoue T, Thomas JH (1996) Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143:1193–1205

    PubMed  CAS  Google Scholar 

  • Marbois BN, Clarke CF (1996) The COQ7 gene encodes a protein in saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem 271:2995–3004

    PubMed  CAS  Google Scholar 

  • Masoro EJ (2002) Caloric restriction: a key to understanding and modulating aging. Elsevier Science, Amsterdam

    Google Scholar 

  • Matyash V, Entchev EV, Mende F, Wilsch-Brauninger M, Thiele C, Schmidt AW, Knolker HJ, Ward S, Kurzchalia TV (2004) Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol 2:e280

    PubMed  Google Scholar 

  • McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121

    PubMed  CAS  Google Scholar 

  • Mcelwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans dauer larvae and long-lived Daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543

    PubMed  CAS  Google Scholar 

  • Mcelwee JJ, Schuster E, Blanc E, Thornton J, Gems D (2006) Diapause-associated metabolic traits reiterated in long-lived Daf-2 mutants in the nematode Caenorhabditis elegans. Mech Ageing Dev 127:458–472

    PubMed  CAS  Google Scholar 

  • Meissner B, Boll M, Daniel H, Baumeister R (2004) Deletion of the intestinal peptide transporter affects insulin and Tor signaling in Caenorhabditis elegans. J Biol Chem 279:36739–36745

    PubMed  CAS  Google Scholar 

  • Melov S, Hertz GZ, Stormo GD, Johnson TE (1994) Detection of deletions in the mitochondrial genome of Caenorhabditis elegans. Nucleic Acids Res 22:1075–1078

    PubMed  CAS  Google Scholar 

  • Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE (1995) Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res 23:1419–1425

    PubMed  CAS  Google Scholar 

  • Melov S et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    PubMed  CAS  Google Scholar 

  • Michalski AI, Johnson TE, Cypser JR, Yashin AI (2001) Heating stress patterns in Caenorhabditis elegans longevity and survivorship. Biogerontology 2:35–44

    PubMed  CAS  Google Scholar 

  • Mihaylova VT, Borland CZ, Manjarrez L, Stern MJ, Sun H (1999) The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci USA 96:7427–7432

    PubMed  CAS  Google Scholar 

  • Miwa S, St-Pierre J, Partridge L, Brand MD (2003) Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 35:938–948

    PubMed  CAS  Google Scholar 

  • Miyadera H et al (2001) Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 276:7713–7716

    PubMed  CAS  Google Scholar 

  • Miyadera H, Kano K, Miyoshi H, Ishii N, Hekimi S, Kita K (2002) Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. FEBS Lett 512:33–37

    PubMed  CAS  Google Scholar 

  • Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    PubMed  CAS  Google Scholar 

  • Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124:1209–1223

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA (2005) C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab 2:35–42

    PubMed  CAS  Google Scholar 

  • Munoz MJ, Riddle DL (2003) Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163:171–180

    PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (2001) The OLD-1 positive regulator of longevity and stress resistance is under DAF-16 regulation in Caenorhabditis elegans. Curr Biol 11:1517–1523

    PubMed  CAS  Google Scholar 

  • Murphy CT et al (2003) Genes that act downstream of daf-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284

    PubMed  CAS  Google Scholar 

  • Nakai D et al. (2001) Mouse homologue of coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q synthesis, maintenance of mitochondrial integrity, and neurogenesis. Biochem Biophys Res Commun 289:463–471

    PubMed  CAS  Google Scholar 

  • Nanji M, Hopper NA, Gems D (2005) Let-60 Ras modulates effects of insulin/Igf-1 signaling on development and aging in Caenorhabditis elegans. Aging Cell 4:235–245

    PubMed  CAS  Google Scholar 

  • Narbonne P, Roy R (2006) Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133:611–619

    PubMed  CAS  Google Scholar 

  • Nehrke K (2003) A reduction in intestinal cell Ph(I) due to loss of the Caenorhabditis elegans Na+/H+ Exchanger Nhx-2 increases life span. J Biol Chem 278:44657–44666

    PubMed  CAS  Google Scholar 

  • Nelson DW, Padgett RW (2003) Insulin worms its way into the spotlight. Genes Dev 17:813–818

    PubMed  CAS  Google Scholar 

  • Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2:887–893

    PubMed  CAS  Google Scholar 

  • Ogg S et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    PubMed  CAS  Google Scholar 

  • Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) Jnk regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/Daf-16. Proc Natl Acad Sci USA 102:4494–4499

    PubMed  CAS  Google Scholar 

  • Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HA (2006) Identification of direct Daf-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38:251–257

    PubMed  Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/Igf and target of rapamycin signaling: a tor de force in growth control. Trends Cell Biol 13:79–85

    PubMed  CAS  Google Scholar 

  • Ookuma S, Fukuda M, Nishida E (2003) Identification of a Daf-16 transcriptional target gene, Scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans. Curr Biol 13:427–431

    PubMed  CAS  Google Scholar 

  • Oriordan VB, Burnell AM (1989) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans .1. Glycolysis, gluconeogenesis, oxidative-phosphorylation and the tricarboxylic-acid cycle. Comp Biochem Physiol B Biochem Mol Biol 92:233–238

    Google Scholar 

  • Oriordan VB, Burnell AM (1990) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans .2. The glyoxylate cycle and fatty-acid oxidation. Comp Biochem Physiol B Biochem Mol Biol 95:125–130

    Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    PubMed  CAS  Google Scholar 

  • Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    PubMed  CAS  Google Scholar 

  • Patterson GI (2003) Aging: new targets, new functions. Curr Biol 13:R279–R281

    PubMed  CAS  Google Scholar 

  • Patterson GI, Koweek A, Wong A, Liu Y, Ruvkun G (1997) The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 11:2679–2690

    PubMed  CAS  Google Scholar 

  • Pellerone FI, Archer SK, Behm CA, Grant WN, Lacey MJ, Somerville AC (2003) Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. Int J Perasitol 33:1195–1206

    CAS  Google Scholar 

  • Pennisi E (1998) Do fateful circles of DNA cause cells to grow old? Science 279:34

    PubMed  CAS  Google Scholar 

  • Petriv OI, Rachubinski RA (2004) Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J Biol Chem 279:19996–20001

    PubMed  CAS  Google Scholar 

  • Pierce SB et al (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15:672–686

    PubMed  CAS  Google Scholar 

  • Popham J, Webster J (1979) Aspects of the fine structure of the dauer larva of the nematode C. elegans. Can J Zool 57:794–800

    Article  Google Scholar 

  • Prasanna HR, Lane RS (1979) Protein degradation in aged nematodes (Turbatrix-Aceti). Biochem Biophys Res Commun 86:552–559

    PubMed  CAS  Google Scholar 

  • Rea S, Johnson TE (2003) A metabolic model for life span determination in Caenorhabditis elegans. Dev Cell 5:197–203

    PubMed  CAS  Google Scholar 

  • Rea SL, Wu DQ, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37:894–898

    PubMed  CAS  Google Scholar 

  • Reiss U, Rothstein M (1974) Heat-labile isoenzymes of isocitrate lyase from aging Turbatrix Aceti. Biochem Biophys Res Commun 61:1012–1016

    PubMed  CAS  Google Scholar 

  • Reiss U, Rothstein M (1975) Age-related changes in isocitrate lyase from the free living nematode, Turbatrix aceti. J Biol Chem 250:826–830

    PubMed  CAS  Google Scholar 

  • Reznick AZ, Gershon D (1977) Purification of fructose-1.6-diphosphate aldolase from free-living nematode Turbatrix Aceti—comparison of properties with those of other class-I aldolases. Int J Biochem 8:53–59

    CAS  Google Scholar 

  • Reznick AZ, Gershon D (1979) The effect of age on the protein degradation system in the nematode Turbatrix aceti. Mech Ageing Dev 11:403–415

    PubMed  CAS  Google Scholar 

  • Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Plainview, pp 739–768

    Google Scholar 

  • Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode dauer larva formation. Nature 290:668–671

    PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–6003

    PubMed  CAS  Google Scholar 

  • Rothstein M (1975) Aging and the alteration of enzymes: a review. Mech Ageing Dev 4:325–338

    PubMed  CAS  Google Scholar 

  • Rothstein M (1977) Recent developments in the age-related alteration of enzymes: a review. Mech Ageing Dev 6:241–257

    PubMed  CAS  Google Scholar 

  • Rottiers V, Antebi A (2006) Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Exp Gerontol [Epub ahead of print]

  • Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A (2006) Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell 10:473–482

    PubMed  CAS  Google Scholar 

  • Rouault JP, Kuwabara PE, Sinilnikova OM, Duret L, Thierry-Mieg D, Billaud M (1999) Regulation of dauer larva development in Caenorhabditis elegans by daf- 18, a homologue of the tumour suppressor PTEN. Curr Biol 9:329–332

    PubMed  CAS  Google Scholar 

  • Russell RL, Seppa RI (1987) Genetic and environmental manipulation of aging in Caenorhabditis elegans. Basic Life Sci 42:35–48

    PubMed  CAS  Google Scholar 

  • Sampayo JN, Gill MS, Lithgow GJ (2003a) Oxidative stress and aging—the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem Soc Trans 31:1305–1307

    Article  CAS  Google Scholar 

  • Sampayo JN, Olsen A, Lithgow GJ (2003b) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2:319–326

    CAS  Google Scholar 

  • Sarkis GJ, Ashcom JD, Hawdon JM, Jacobson LA (1988) Decline in protease activities with age in the nematode Caenorhabditis elegans. Mech Ageing Dev 45:191–201

    PubMed  CAS  Google Scholar 

  • Schafer JC, Winkelbauer ME, Williams CL, Haycraft CJ, Desmond RA, Yoder BK (2006) IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Caenorhabditis elegans. J Cell Sci 119:4088–4100

    PubMed  CAS  Google Scholar 

  • Senoo-Matsuda N et al (2001) A defect in the cytochrome b large subunit in complex ii causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276:41553–41558

    PubMed  CAS  Google Scholar 

  • Sharma HK, Rothstein M (1978a) Age-related changes in the properties of enolase from Turbatrix aceti. Biochemistry 17:2869–2876

    CAS  Google Scholar 

  • Sharma HK, Rothstein M (1978b) Serological evidence for the alteration of enolase during aging. Mech Ageing Dev 8:341–354

    CAS  Google Scholar 

  • Sharma HK, Rothstein M (1980) Altered enolase in aged Turbatrix aceti results from conformational changes in the enzyme. Proc Natl Acad Sci USA 77:5865–5868

    PubMed  CAS  Google Scholar 

  • Sharma HK, Gupta SK, Rothstein M (1976) Age-related alteration of enolase in free-living nematode, Turbatrix-Aceti. Arch Biochem Biophys 174:324–332

    PubMed  CAS  Google Scholar 

  • Sharma HK, Prasanna HR, Lane RS, Rothstein M (1979) Effect of age on enolase turnover in the free-living nematode, Turbatrix, Turbatrix-Aceti. Arch Biochem Biophys 194:275–282

    PubMed  CAS  Google Scholar 

  • Sheng H, Shao J, Dubois RN (2001) K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61:2670–2675

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Mills K, Guarente L (1998) Molecular mechanisms of yeast aging. Trends Biochem Sci 23:131–134

    PubMed  CAS  Google Scholar 

  • Stenmark P, Grunler J, Mattsson J, Sindelar PJ, Nordlund P, Berthold DA (2001) A new member of the family of di-iron carboxylate proteins. coq7 (clk- 1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J Biol Chem 276:33297–33300

    PubMed  CAS  Google Scholar 

  • Stepanyan Z, Hughes B, Cliche D, Camp D, Hekimi S (2006) Genetic and molecular characterization of CLK-1/mCLK-1, a conserved determinant of the rate of aging. Exp Gerontol [Epub ahead of print]

  • Suzuki N, Inokuma K, Yasuda K, Ishii N (1996) Cloning, sequencing and mapping of a manganese superoxide dismutase gene of the nematode Caenorhabditis elegans. DNA Res 3:171–174

    PubMed  CAS  Google Scholar 

  • Tatar m, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    PubMed  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    PubMed  CAS  Google Scholar 

  • Taub J et al (1999) A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 399:162–166

    PubMed  CAS  Google Scholar 

  • Thomas JH, Birnby DA, Vowels JJ (1993) Evidence for parallel-processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 134:1105–1117

    PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    PubMed  CAS  Google Scholar 

  • Tu MP, Epstein D, Tatar M (2002) The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homolog chico. Aging Cell 1:75–80

    PubMed  CAS  Google Scholar 

  • Van Der Horst A, Tertoolen LGJ, De Vries-Smits LMM, Frye RA, Medema RH, Burgering BMT (2004) Foxo4 is acetylated upon peroxide stress and deacetylated by the longevity protein Hsir2(Sirt1). J Biol Chem 279:28873–28879

    PubMed  Google Scholar 

  • Van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RGJ (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4:79–85

    PubMed  Google Scholar 

  • Van Voorhies WA (2003) Is life span extension in single gene long-lived Caenorhabditis elegans mutants due to hypometabolism? Exp Gerontol 38:615–618

    PubMed  Google Scholar 

  • Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 96:11399–11403

    PubMed  Google Scholar 

  • Van Voorhies WA, Ward S (2000) Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol 203(Pt 16):2467–2478

    PubMed  Google Scholar 

  • Vanfleteren JR (1978) Axenic culture of free-living, plant-parasitic, and insect-parasitic nematodes. Ann Rev Phytopathol 16:131–157

    CAS  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292(Pt 2):605–608

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR, De Vreese A (1994) Analysis of the proteins of aging Caenorhabditis elegans by high resolution two-dimensional gel electrophoresis. Electrophoresis 15:289–296

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR, De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J 9:1355–1361

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR, De Vreese A, Braeckman BP (1998) Two-parameter logistic and Weibull equations provide better fits to survival data from isogenic populations of Caenorhabditis elegans in axenic culture than does the Gompertz model (discussion B404–B408). J Gerontol A Biol Sci Med Sci 53:B393–B403

    PubMed  CAS  Google Scholar 

  • Vaupel JW, Johnson TE, Lithgow GJ (1994) Rates of mortality in populations of Caenorhabditis elegans (discussion 828). Science 266:826

    PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    PubMed  CAS  Google Scholar 

  • Ventura N, Rea S, Henderson ST, Condo I, Johnson TE, Testi R (2005) Reduced expression of frataxin extends the lifespan of Caenorhabditis elegans. Aging Cell 4:109–112

    PubMed  CAS  Google Scholar 

  • Vowels JJ, Thomas JH (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130:105–123

    PubMed  CAS  Google Scholar 

  • Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139

    PubMed  CAS  Google Scholar 

  • Walker GA et al (2001) Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 56:B281–B287

    PubMed  CAS  Google Scholar 

  • Walker G, Houthoofd K, Vanfleteren JR, Gems D (2005) Dietary Restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 126:929–937

    PubMed  CAS  Google Scholar 

  • Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634

    PubMed  CAS  Google Scholar 

  • Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127:48–56

    PubMed  CAS  Google Scholar 

  • Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, Tissenbaum HA (2006) C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127:741–747

    PubMed  CAS  Google Scholar 

  • Wolff S, Dillin A (2006) The trifecta of aging in Caenorhabditis elegans. Exp Gerontol [Epub ahead of print]

  • Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A (2006) Smk-1, an essential regulator of Daf-16-mediated longevity. Cell 124:1039–1053

    PubMed  CAS  Google Scholar 

  • Wolkow CA (2002) Life span: getting the signal from the nervous system. Trends Neurosci 25:212–216

    PubMed  CAS  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290:147–150

    PubMed  CAS  Google Scholar 

  • Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G (2002) Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 277:49591–49597

    PubMed  CAS  Google Scholar 

  • Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139:1247–1259

    PubMed  CAS  Google Scholar 

  • Wood WB (1998) Aging of C. elegans: mosaics and mechanisms. Cell 95:147–150

    PubMed  CAS  Google Scholar 

  • Wood JG et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    PubMed  CAS  Google Scholar 

  • Yashin AI, Cypser JR, Johnson TE, Michalski AI, Boyko SI, Novoseltsev VN (2001) Ageing and survival after different doses of heat shock: the results of analysis of data from stress experiments with the nematode worm Caenorhabditis elegans. Mech Ageing Dev 122:1477–1495

    PubMed  CAS  Google Scholar 

  • Yashin AI, Cypser JW, Johnson TE, Michalski AI, Boyko SI, Novoseltsev VN (2002) Heat shock changes the heterogeneity distribution in populations of Caenorhabditis elegans: does it tell us anything about the biological mechanism of stress response? J Gerontol A Biol Sci Med Sci 57:B83–B92

    PubMed  Google Scholar 

  • Zuckerman BM, Himmelhoch S, Kisiel M (1973) Fine-structure changes in cuticle of adult Caenorhabditis. Briggsae with age. Nematologica 19:109

    Article  Google Scholar 

Download references

Acknowledgments

We thank the referees for helpful comments on this manuscript. KH is a postdoctoral fellow with the Fund of Scientific Research-Flanders (FWO-Vl). This work was supported by Ghent University (GOA 12050101), the FWO-Vl (G.0025.06) and the European community (LSHM-CT-2004-512020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques R. Vanfleteren.

Additional information

Communicated by T. Nyström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houthoofd, K., Vanfleteren, J.R. Public and private mechanisms of life extension in Caenorhabditis elegans . Mol Genet Genomics 277, 601–617 (2007). https://doi.org/10.1007/s00438-007-0225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0225-1

Keywords

Navigation