Skip to main content

Advertisement

Log in

The functions of herpesvirus-encoded microRNAs

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Bioinformatic and direct cloning approaches have led to the identification of over 100 novel miRNAs expressed in DNA viruses, although the function of the majority of these small regulatory RNA molecules is unclear. Recently, a number of reports have now identified potential targets of viral miRNAs, including cellular and viral genes as well as an ortholog of an important immuno-regulatory cellular miRNA. In this review, we will cover the identification and characterization of miRNAs expressed in the herpesvirus family and discuss the potential significance of their role in viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roizman B, Pellet E (2001) The family Herpesviridae: a brief introduction. In: Fields virol olgy, vol 2, Raven press, Philadelphia, pp 2381–2397

  2. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  PubMed  Google Scholar 

  3. Grey F, Meyers H, White EA, Spector DH, Nelson J (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW (2006) Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82–85

    Article  CAS  PubMed  Google Scholar 

  5. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD (2007) Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 104:16164–16169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s Sarcoma-associated Herpesvirus Encodes an Ortholog of miR-155. J Virol 81(23):12836–12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3:e65

    Article  PubMed  PubMed Central  Google Scholar 

  9. Preston CM (2000) Repression of viral transcription during herpes simplex virus latency. J Gen Virol 81:1–19

    CAS  PubMed  Google Scholar 

  10. Branco FJ, Fraser NW (2005) Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79:9019–9025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson RL, Sawtell NM (2001) Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75:6660–6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, Isaacs G, Morgan RW (2006) Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 80:8778–8786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, Sewer A, Zavolan M, Nair V (2007) Marek’s disease virus type 2 (MDV-2)-encoded MicroRNAs show no sequence conservation with those encoded by MDV-1. J Virol 81:7164–7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D (2003) Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197:1427–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J (2005) Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79:12095–12099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nelson JA, Gnann JW Jr, Ghazal P (1990) Regulation and tissue-specific expression of human cytomegalovirus. Curr Top Microbiol Immunol 154:75–100

    CAS  PubMed  Google Scholar 

  18. Boehler A, Schaffner A, Salomon F, Keusch G (1994) Cytomegalovirus disease of late onset following renal transplantation: a potentially fatal entity. Scand J Infect Dis 26:369–373

    Article  CAS  PubMed  Google Scholar 

  19. Ballard RA, Drew WL, Hufnagle KG, Riedel PA (1979) Acquired cytomegalovirus infection in preterm infants. Am J Dis Child 133:482–485

    CAS  PubMed  Google Scholar 

  20. Adler SP (1983) Transfusion-associated cytomegalovirus infections. Rev Infect Dis 5:977–993

    Article  CAS  PubMed  Google Scholar 

  21. Einhorn L, Ost A (1984) Cytomegalovirus infection of human blood cells. J Infect Dis 149:207–214

    Article  CAS  PubMed  Google Scholar 

  22. Macher AM, Reichert CM, Straus SE, Longo DL, Parrillo J, Lane HC, Fauci AS, Rook AH, Manischewitz JF, Quinnan GV Jr (1983) Death in the AIDS patient: role of cytomegalovirus. N Engl J Med 309:1454

    Article  CAS  PubMed  Google Scholar 

  23. Neiman P, Wasserman PB, Wentworth BB, Kao GF, Lerner KG, Storb R, Buckner CD, Clift RA, Fefer A, Fass L, Glucksberg H, Thomas ED (1973) Interstitial pneumonia and cytomegalovirus infection as complications of human marrow transplantation. Transplantation 15:478–485

    Article  CAS  PubMed  Google Scholar 

  24. Tegtmeier GE (1988) The use of cytomegalovirus-screened blood in neonates. Transfusion 28:201–203

    Article  CAS  PubMed  Google Scholar 

  25. Melnick JL, Adam E, DeBakey ME (1996) Cytomegalovirus and atherosclerosis. Arch Immunol Ther Exp (Warsz) 44:297–302

    CAS  PubMed  Google Scholar 

  26. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  CAS  PubMed  Google Scholar 

  27. Grey F, Meyers HL, White EA, Spector DH, Nelson J (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3(11):e163

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mocarski ES, Kemble GW, Lyle JM, Greaves RF (1996) A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci USA 93:11321–11326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buck AH, Santoyo-Lopez J, Robertson KA, Kumar DS, Reczko M, Ghazal P (2007) Discrete clusters of viral encoded miRNAs are associated with complementary strands of the genome and the 7.2-kb stable intron in murine cytomegalovirus. J Virol 81(23):13761–13770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dolken L, Perot J, Cognat V, Alioua A, John M, Soutschek J, Ruzsics Z, Koszinowski U, Voinnet O, Pfeffer S (2007) Mouse cytomegalovirus microRNAs dominate the cellular small RNAs profile during lytic infection and show features of post-transcriptional regulation. J Virol (in press)

  31. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  32. Smith PR, de Jesus O, Turner D, Hollyoake M, Karstegl CE, Griffin BE, Karran L, Wang Y, Hayward SD, Farrell PJ (2000) Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J Virol 74:3082–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    Article  PubMed  PubMed Central  Google Scholar 

  34. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Young LS, Rickinson AB (2004) Epstein–Barr virus: 40 years on. Nat Rev Cancer 4:757–768

    Article  CAS  PubMed  Google Scholar 

  36. Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore P, Chang Y (2001) Kaposi’s sacoma-associated Herpesvirus. In: Fields virology, vol 2. Raven press, Philadelphia, pp 2803–2831

  39. Pearce M, Matsumura S, Wilson AC (2005) Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi’s sarcoma-associated herpesvirus originate from a common promoter. J Virol 79:14457–14464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai X, Cullen BR (2006) Transcriptional origin of Kaposi’s sarcoma-associated herpesvirus microRNAs. J Virol 80:2234–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:739–741

    Article  CAS  PubMed  Google Scholar 

  42. Schafer A, Cai X, Bilello JP, Desrosiers RC, Cullen BR (2007) Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364:21–27

    Article  PubMed  Google Scholar 

  43. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  44. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bowden RJ, Simas JP, Davis AJ, Efstathiou S (1997) Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 78(Pt 7):1675–1687

    Article  CAS  PubMed  Google Scholar 

  46. Simas JP, Bowden RJ, Paige V, Efstathiou S (1998) Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol 79(Pt 1):149–153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Grey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grey, F., Hook, L. & Nelson, J. The functions of herpesvirus-encoded microRNAs. Med Microbiol Immunol 197, 261–267 (2008). https://doi.org/10.1007/s00430-007-0070-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-007-0070-1

Keywords

Navigation