Skip to main content
Log in

Structural basis for modification of flavonol and naphthol glucoconjugates by Nicotiana tabacum malonyltransferase (NtMaT1)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant HXXXD acyltransferase-catalyzed malonylation is an important modification reaction in elaborating the structural diversity of flavonoids and anthocyanins, and a universal adaptive mechanism to detoxify xenobiotics. Nicotiana tabacum malonyltransferase 1 (NtMaT1) is a member of anthocyanin acyltransferase subfamily that uses malonyl-CoA (MLC) as donor catalyzing transacylation in a range of flavonoid and naphthol glucosides. To gain insights into the molecular basis underlying its catalytic mechanism and versatile substrate specificity, we resolved the X-ray crystal structure of NtMaT1 to 3.1 Å resolution. The structure comprises two α/β mixed subdomains, as typically found in the HXXXD acyltransferases. The partial electron density map of malonyl-CoA allowed us to reliably dock the entire molecule into the solvent channel and subsequently define the binding sites for both donor and acceptor substrates. MLC bound to the NtMaT1 occupies one end of the long solvent channel between two subdomains. On superimposing and comparing the structure of NtMaT1 with that of an enzyme from anthocyanin acyltransferase subfamily from red chrysanthemum (Dm3Mat3) revealed large architectural variation in the binding sites, both for the acyl donor and for the acceptor, although their overall protein folds are structurally conserved. Consequently, the shape and the interactions of malonyl-CoA with the binding sites’ amino acid residues differ substantially. These major local architectural disparities point to the independent, divergent evolution of plant HXXXD acyltransferases in different species. The structural flexibility of the enzyme and the amendable binding pattern of the substrates provide a basis for the evolution of the distinct, versatile substrate specificity of plant HXXXD acyltransferases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman A, Hasegawa PM (2011) Plant biotechnology and agriculture: prospects for the 21st century. Academic Press, UK

  • Buglino J, Onwueme KC, Ferreras JA et al (2004) Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis. J Biol Chem 279:30634–30642

    Article  PubMed  CAS  Google Scholar 

  • Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  • Cowtan K (2000) General quadratic functions in real and reciprocal space and their application to likelihood phasing. Acta Crystallogr D Biol Crystallogr 56:1612–1621

    Article  PubMed  CAS  Google Scholar 

  • Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011

    Article  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • Day JA, Saunders EM (2004) Glycosidation of chlorophenols by Lemna minor. Environ Toxicol Chem 23:613–620

    Article  PubMed  CAS  Google Scholar 

  • DeLano W (2003) The PyMOL molecular graphics system. Version 1.3, Schrödinger, LLC

  • Dhaubhadel S, Farhangkhoee M, Chapman R (2008) Identification and characterization of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J Exp Bot 59:981–994

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    Article  PubMed  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel GS (1959) The raison d’Etre of secondary plant substances. Science 129:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Tanaka Y, Yonekura-Sakakibara K et al (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J 16:421–431

    Article  PubMed  CAS  Google Scholar 

  • Garvey GS, McCormick SP, Rayment I (2008) Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating Fusarium head blight. J Biol Chem 283:1660–1669

    Article  PubMed  CAS  Google Scholar 

  • Garvey GS, McCormick SP, Alexander NJ, Rayment I (2009) Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides. Protein Sci 18:747–761

    PubMed  CAS  Google Scholar 

  • Gerasimenko I, Ma X, Sheludko Y et al (2004) Purification and partial amino acid sequences of the enzyme vinorine synthase involved in a crucial step of ajmaline biosynthesis. Bioorg Med Chem 12:2781–2786

    Article  PubMed  CAS  Google Scholar 

  • Gibrat JF, Madej T, Bryant SH (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 6:377–385

    Article  PubMed  CAS  Google Scholar 

  • Gould K, Davies KM, Winefield C (2009) Anthocyanins: biosynthesis, functions, and applications. Springer

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  • Heller W, Forkmann G (1994) In: Harborne JB (ed) The flavonoids. Chapman & Hall, London, pp 499–535

  • Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    PubMed  CAS  Google Scholar 

  • Jez JM et al (2000) Structural control of polyketide formation in plant-specific polyketide synthesis. Chem Biol 7:919–930

    Article  PubMed  CAS  Google Scholar 

  • Jogl G, Tong L (2003) Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell 112:113–122

    Article  PubMed  CAS  Google Scholar 

  • Jogl G, Hsiao Y-S, Tong L (2004) Structure and function of carnitine acyltransferases. Ann N Y Acad Sci 1033:17–29

    Article  PubMed  CAS  Google Scholar 

  • Krissinel E (2010) Crystal contacts as nature’s docking solutions. J Comput Chem 31:133–143

    Article  PubMed  CAS  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  • Lamy S, Blanchette M, Michaud-Levesque J et al (2006) Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 27:989–996

    Article  PubMed  CAS  Google Scholar 

  • Lamy S, Beaulieu E, Labbé D et al (2008) Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling. Carcinogenesis 29:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Liu C-J, Deavours BE, Richard SB et al (2006) Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell 18:3656–3669

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Nishiyama Y, Fuell C et al (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50:678–695

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Koepke J, Panjikar S et al (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583

    Article  PubMed  CAS  Google Scholar 

  • Markham KR, Ryan KG, Gould KS, Rickards GK (2000) Cell wall sited flavonoids in lisianthus flower petals. Phytochemistry 54:681–687

    Article  PubMed  CAS  Google Scholar 

  • Matern U, Heller W, Himmelspach K (1983) Conformational changes of apigenin 7-O-(6-O-malonylglucoside), a vacuolar pigment from parsley, with solvent composition and proton concentration. Eur J Biochem 133:439–448

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed  CAS  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Suzuki H, Nishino T (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J Mol Catal B Enzym 23:117–132

    Article  CAS  Google Scholar 

  • Onwueme KC, Ferreras JA, Buglino J et al (2004) Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci USA 101:4608–4613

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM (eds) Method Enzymology: macromolecular crystallography, part A, V276. Academic Press, New York, pp 307–326

  • Panjikar S, Parthasarathy V, Lamzin VS et al (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D Biol Crystallogr 61:449–457

    Article  PubMed  Google Scholar 

  • Panjikar S, Parthasarathy V, Lamzin VS et al (2009) On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr D Biol Crystallogr 65:1089–1097

    Article  PubMed  Google Scholar 

  • Rautengarten C et al (2012) Arabidopsis deficient in cutin ferulate encodes a transferase required for feruloylation of omega-hydroxy fatty acids in cutin polyester. Plant Physiol 158:654–665

    Article  PubMed  CAS  Google Scholar 

  • Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A Found Crystallogr 42:140–149

    Article  Google Scholar 

  • Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of nucleotide-binding protein. Nature 250:194–199

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr, Schmitt R, Eckey H, Bauknecht T (1991) Plant biochemistry of xenobiotics: isolation and properties of soybean O- and N-glucosyl and O- and N-malonyltransferases for chlorinated phenols and anilines. Arch Biochem Biophys 287:341–350

    Article  PubMed  CAS  Google Scholar 

  • Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58:1772–1779

    Article  PubMed  Google Scholar 

  • Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485

    Article  PubMed  Google Scholar 

  • Sinclair JC, Sandy J, Delgoda R et al (2000) Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol 7:560–564

    Article  PubMed  CAS  Google Scholar 

  • St Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Recent advances in phytochemistry. Evolution of metabolic pathways. Elsevier Science Ltd, Oxford, pp 285–315

  • Strack D, Wray V (1994) The anthocyanins. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London

    Google Scholar 

  • Suzuki H, Nakayama T, Yonekura-Sakakibara K et al (2001) Malonyl-CoA: anthocyanin 5-O-glucoside-6″-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. Enzyme purification, gene cloning, expression, and characterization. J Biol Chem 276:49013–49019

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Nakayama T, Yonekura-Sakakibara K et al (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-O-glucoside-6″-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Nakayama T, Nishino T (2003a) Proposed mechanism and functional amino acid residues of malonyl-CoA:anthocyanin 5-O-glucoside-6″-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry 42:1764–1771

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Sawada S, Yonekura-Sakakibara K et al (2003b) Identification of a cDNA encoding malonyl-coenzyme A: anthocyanidin 3-O-glucoside 6″-O- malonyltransferase from Cineraria (Senecio cruentus) Flowers. Plant Biotechnol 20:229–234

    Article  CAS  Google Scholar 

  • Suzuki H, Sawada S, Watanabe K et al (2004) Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J 38:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Nishino T, Nakayama T (2007) cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6″-O-malonyltransferase. Phytochemistry 68:2035–2042

    Article  PubMed  CAS  Google Scholar 

  • Taguchi G, Shitchi Y, Shirasawa S et al (2005) Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells. Plant J 42:481–491

    Article  PubMed  CAS  Google Scholar 

  • Taguchi G, Ubukata T, Nozue H et al (2010) Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J 63:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger TC (2001) Maximum-likelihood density modification using pattern recognition of structural motifs. Acta Crystallogr D Biol Crystallogr 57:1755–1762

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55:849–861

    Article  PubMed  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with anew scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  CAS  Google Scholar 

  • Tuominen LK, Johnson VE, Tsai C-J (2011) Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genomics 12:236

    Article  PubMed  CAS  Google Scholar 

  • Unno H, Ichimaida F, Suzuki H et al (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282:15812–15822

    Article  PubMed  CAS  Google Scholar 

  • Upton A, Johnson N, Sandy J, Sim E (2001) Arylamine N-acetyltransferases—of mice, men and microorganisms. Trends Pharmacol Sci 22:140–146

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2010) Biochemistry of plant secondary metabolism. Wiley, New York

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Winn MD, Isupov MN, Murshudov GN (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr 57:122–133

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tanaka Y, Fukuchi-Mizutani M et al (2000) Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA: anthocyanin 3-O-glucoside-6″-O-acyltransferase from Perilla frutescens. Plant Cell Physiol 41:495–502

    Article  PubMed  CAS  Google Scholar 

  • Yu X-H, Chen M-H, Liu C-J (2008) Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Plant J 55:382–396

    Article  PubMed  CAS  Google Scholar 

  • Yu X-H, Gou J-Y, Liu C-J (2009) BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol Biol 70:421–442

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Huhman D, Shadle G et al (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  PubMed  CAS  Google Scholar 

  • Zubieta C, He X-Z, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Mol Biol 8:271–279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of Protein X-ray Crystallography Research Resource (PXRR), and M. Sullivan, J. Toomey, and D. Abel in the Case Center for Synchrotron Biosciences (CSB) at the National Synchrotron Light Source for their generous support. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DEAC0298CH10886 and the Laboratory Directed Research and Development Program of Brookhaven National Laboratory (11-007) to CJL; The work done by BAM was in part supported by the Biomedical Technology Centers Program of the National Institute for Biomedical Imaging and Bioengineering (P30-EB-09998) to MRC. The diffraction data were collected at X-3A, X-12C, and X-29 beamlines of National Synchrotron Light Source, USA. Use of the National Synchrotron Light Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Liu.

Additional information

B. A. Manjasetty and X.-H. Yu contributed equally to this work.

A contribution to the Special Issue on Metabolic Plant Biology.

The coordinates and structure factors were deposited in the RCSB Protein Data Bank under accession code 2XR7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjasetty, B.A., Yu, XH., Panjikar, S. et al. Structural basis for modification of flavonol and naphthol glucoconjugates by Nicotiana tabacum malonyltransferase (NtMaT1). Planta 236, 781–793 (2012). https://doi.org/10.1007/s00425-012-1660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1660-8

Keywords

Navigation