Skip to main content
Log in

Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Resurrection plants differ from other species in their unique ability to survive desiccation. In order to understand the mechanisms of desiccation tolerance, proteome studies were carried out using leaves of the resurrection plant Boea hygrometrica to reveal proteins that were differentially expressed in response to changes in relative water content. This opportunity was afforded by the rare ability of excised B. hygrometrica leaves to survive and resume metabolism following desiccation in a manner similar to intact plants. From a total of 223 proteins that were reproducibly detected and analyzed, 35% showed increased abundance in dehydrated leaves, 5% were induced in rehydrated leaves and 60% showed decreased or unchanged abundance in dehydrated and rehydrated leaves. Since the induction kinetics fall into clearly defined patterns, we suggest that programmed regulation of protein expression triggered by changes of water status. Fourteen dehydration responsive proteins were analyzed by mass spectrometry. Eight proteins were classified as playing a role in reactive oxygen species scavenging, photosynthesis and energy metabolism. In agreement with these findings, glutathione content and polyphenol oxidase activity were found to increase upon dehydration and rapid recovery of photosynthesis was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alamillo JM, Bartels D (2001) Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci 160:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Albert VA, Williams SE, ChaseMW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Augusti A, Scartazza A, Navari-Izzo F, Sgherri CLM, Stevanović B, Brugnoli E (2001) Photosystem II photochemical efficiency, zeaxanthin and antioxidant contents in the poikilohydric Ramonda serbica during dehydration and rehydration. Photosynth Res 67:79–88

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Dietz KJ (1998) The costs and benefits of oxygen in photosynthetic plant metabolism. Prog Bot 60:283–314

    Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscissic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  Google Scholar 

  • Bernacchia G, Schwall G, Lottspeich F, Salamini F, Bartels D (1995) The transketolase gene family of the resurrection plant Craterostigma plantagineum differential expression during the rehydration phase, EMBO J 14:610–618

    PubMed  CAS  Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1992) Low molecular weight solutes in desiccated and ABA-treated calli and leaves of Craterostigma plantagineum. Phytochemistry 31:1917–1922

    Article  CAS  Google Scholar 

  • Blomstedt CK, Gianello RD, Hamill JD, Neale AD, Gaff DF (1998a) Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regul 24:153–161

    Article  CAS  Google Scholar 

  • Blomstedt CK, Gianello RD, Gaff DF, Hamill JD, Neale AD (1998b) Differential gene expression in desiccation-tolerant and desiccation-sensitive tissue of the resurrection grass, Sporobolus stapfianus. Aust J Plant Physiol 25:937–946

    CAS  Google Scholar 

  • Bochicchio A, Vazzana C, Puliga S, Alberti A, Cinganelli S, Vernieri P (1998) Moisture content of the dried leaf is critical to desiccation tolerance in detached leaves of the resurrection plant Boea hygroscopica. Plant Growth Regul 24:163–170

    Article  CAS  Google Scholar 

  • Bowler C, van Montague M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Churin Y, Schilling S, Borner T (1999) A gene family encoding glutathione peroxidase homologues in Hordeum vulgare (barley). FEBS Lett 459:33–38

    Article  PubMed  CAS  Google Scholar 

  • Collett H, Butowt R, Smith J, Farrant J, Illing N (2003) Photosynthetic genes are differentially transcribed during the dehydrationrehydration cycle in the resurrection plant, Xerophyta humilis. J Exp Bot 54:2593–2595

    Article  PubMed  CAS  Google Scholar 

  • Collett H, Shen A, Gardner M, Farrant JM, Denby KJ, Illing N (2004) Towards transcript profiling of desiccation tolerance in Xerophyta humilis: Construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehyration. Physiol Plant 122:39–53

    Article  CAS  Google Scholar 

  • Cooper K, Farrant JM (2002) Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J Exp Bot 53:1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529

    Article  PubMed  CAS  Google Scholar 

  • Damerval C, Vienne D, Zivy M, Thiellement H (1986) The technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • Deng X, Hu Z, Wang H (1999) mRNA differential display visualized by silver staining tested on gene expression in resurrection plant Boea hygrometrica. Plant Mol Biol Rep 17:279

    Article  Google Scholar 

  • Deng X, Hu Z, Wang H, Wen X, Kuang T (2003) A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration. Plant Sci 165:851–861

    Article  CAS  Google Scholar 

  • Desimone M, Wagner E, Johanningmeier U (1998) Degradation of active oxygen modified Rubisco by chloroplastic proteases requieres ATP-hydrolysis. Planta 205:459–466

    Article  CAS  Google Scholar 

  • Farrant JM (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39

    Article  Google Scholar 

  • Farrant J, Cooper K, Kruger LA, Sherwin HW (1999) The effect of rate of drying on three different resurrection plants. Ann Bot 84:371–379

    Article  Google Scholar 

  • Farrant JM, Vander Willigen C, Loffell DA, Bartsch S, Whittaker A (2003) An investigation into the role of light during desiccation of three angiosperm resurrection plants. Plant Cell Environ 26:1275–1286

    Article  CAS  Google Scholar 

  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368

    PubMed  CAS  Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in Southern Africa. Science 25:1033–1034

    Article  Google Scholar 

  • Gaff DF (1997) Mechanism of desiccation tolerance in resurrection vascular plants. In: Basra AS, Basra RK (eds) Mechanisms of environmental stress resistance in plants. Harwood Academic, Amsterdam, pp 43–58

    Google Scholar 

  • Gaff DF, Loveys BR (1984) Abscisic acid content and effects during dehydration ofdetached leaves of desiccation tolerant plants. J Exp Bot 35:1350–1358

    Article  CAS  Google Scholar 

  • Gaff DF, Bartels D, Gaff JL (1997) Changes in gene expression duringdrying in a desiccation-tolerant grass Sporobolus stapfianus and a desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol 24:617–622

    Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari1 M, Sadeghian S, Ober E, Salekdeh G (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5:950–960

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CA, Taylor GJ, Good AG (2002) Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 208:227–232

    Article  PubMed  CAS  Google Scholar 

  • Han G, Li S, Tang C, Li L, Kang T (2004) Progress on the structure of photosynthetic oxygen evolving complex and the mechanism of photosynthetic water oxidation. Prog Chem 16:184–195

    CAS  Google Scholar 

  • Hellwege EM, Dietz KJ, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531

    Article  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Illing N, Denby K, Collett H, Shen A, Farrant JM (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Kamo M, Kawakami T, Miyatake N, Tsugita A (1995) Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16:423–430

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2001) ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. Eur J Biochem 268:2801–2809

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C (2003) The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33:119–129

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Geisler M, Suh S, Kolukisaoglu HÜ, Azevedo L, Plaza S, Curtis MD, Richter A, Weder B, Schulz B, Martinoia E (2004) Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J 39:219–236

    Article  PubMed  CAS  Google Scholar 

  • Kuang J, Gaff DF, Gianello RD, Blomstedt CK, Neale AD, Hamill JD. (1995) Changes in in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol 22:1027–1034

    Article  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    PubMed  CAS  Google Scholar 

  • Marais S, Thomson JA, Farrant JM, Mundree SG (2004) VATP1XV—a novel stress responsive V-ATPase subunit c homologue isolated from the resurrection plant Xerophyta viscosa Baker. Physiol Plant 122:54–61

    Article  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459

    CAS  Google Scholar 

  • Mundree SG, Baker B, Mowla S, Peters S, Marais S, Vander Willigen C, Govender K, Maredza A, Muyanga S, Farrant JM, Thomson JA (2002) Physiological and molecular insights into drought tolerance. Afri J Biotechnol 1:28–38

    CAS  Google Scholar 

  • Navari-Izzo F, Meneguzzo S, Loggini B, Vazzana C, Sgherri CLM (1997) The role of the glutathione system during dehydration of Boea hygroscopica. Physiol Plant 99:23–30

    Article  CAS  Google Scholar 

  • Neale AD, Blomstedt CK, Bronson P, Le TN, Gutteridge K, Evans J, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus, which are induced during severe drought stress. Plant Cell Environ 25:265–277

    Article  Google Scholar 

  • Neubauer C, Yamamoto HY (1994) Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynth Res 39:137–147

    Article  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  CAS  Google Scholar 

  • Oliver MJ (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: Ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol 97:1501–1511

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Article  Google Scholar 

  • Phillips JR, Oliver MJ, Bartels D (2002) Molecular genetics of desiccation tolerant systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 319–341

    Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H(+)-translocating ATPase. Biochim Biophys Acta 1465:17–36

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TL, Bewley JD (1993) Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. J Exp Bot 44:1771–1779

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    Article  PubMed  CAS  Google Scholar 

  • Rohrig H, Schmidt J, Colby T, Brautigam A, Hufnagel P, Bartels D (2006) Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ 29:1606–1617

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277:35–60

    Article  PubMed  Google Scholar 

  • Sgherri CLM, Navari-Izzo F (1995) Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol Plant 93:25–30

    Article  CAS  Google Scholar 

  • Sherman TD, Gardeur TL, Lax AR (1995) Implications of the phyogenetic distribution of polyphenol oxidase in plants. In: Lee CY, Whitaker JR (eds) Enzymatic browning and its prevention. American Chemical Society, Washington, DC, pp 103–119

    Google Scholar 

  • Sherwin HW (1995) Desiccation tolerance and sensitivity of vegetative plant tissue. PhD thesis, University of Natal, Durban, South Africa

  • Sherwin HW, Farrant JM (1998) Protection mechanism against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul 24:203–210

    Article  CAS  Google Scholar 

  • Smith-Espinoza CJ (2001) Analysis of ABA and drought stress mediated gene expression in the desiccation tolerant resurrection plant Craterostigma plantagineum. PhD thesis, University of Cologne, Germany

  • Sullivan ML, Hatfield RD (2006) Polyphenol oxidase and o-diphenols inhibit post-harvest proteolysis in red clover and alfalfa. Crop Physiol Met 46:662–670

    CAS  Google Scholar 

  • Sze H, Li XH, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases. Regulation biosynthesis. Plant Cell 11:677–689

    Article  PubMed  CAS  Google Scholar 

  • Tuba Z, Proctor MCF, Csintalan Zs (1998) Ecophysiological responses of homoichlorophyllous and poikilichlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regul 24:211–217

    Article  CAS  Google Scholar 

  • Tuba Z, Smirnoff N, Csintalan Zs, Nagy Z, Szente K (1997) Respiration during slow desiccation of the poikilochlorophyllous desiccation tolerant plant Xerophyta scabrida at present-day CO2 concentrations. Plant Physiol Biochem 35:381–386

    CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Kukavica B, Stevanovic B, Navari-Izzo F (2006) Senescence- and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. J Exp Bot 57:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Vicré M, Lerouxel O, Farrant J, Lerouge P, Driouich A (2004) Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol Plant 120:229–239

    Article  PubMed  Google Scholar 

  • Wang Y, Tian S, Xu Y, Qin G, Yao H (2004) Changes in the activities of pro- and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at 0 or 20°C. Postharvest Biol Technol 34:21–28

    Article  CAS  Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of Barrel Medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  PubMed  Google Scholar 

  • Xiong L, Zhu J (2002) Plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Liang Y, Shen S, Kuang T (2006) Proteome analysis of rice uppermost internodes at the milky stage. Proteomics 6:3330–3338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shihua Shen, Institute of Botany, Chinese Academy of Sciences and Ms. Anne Bräutigam, Max-Planck-Institut für Züchtungsforschung, Germany, for their excellent discussion and aids on establishment of proteomic platform, and Professor Dr. Dorothea Bartels, IMBIO (Molekulare Physiologie und Biotechnologie der Pflanzen), University of Bonn for critical reading and valuable suggestions. The project was supported by National Natural Science Fundation of China (no. 30400027) and National Basic Research Program of China (973 Programs) (no. 2006CB403206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Deng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, G., Wang, Z., Shang, H. et al. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225, 1405–1420 (2007). https://doi.org/10.1007/s00425-006-0449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0449-z

Keywords

Navigation