Skip to main content
Log in

Biochemical properties of isoprene synthase in poplar (Populus × canescens)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Isoprene synthase (ISPS) catalyzes the elimination of pyrophosphate from dimethylallyl diphosphate (DMADP) forming isoprene, a volatile hydrocarbon emitted from many plant species to the atmosphere. In the present work, immunological techniques were applied to study and localize ISPS in poplar leaves (Populus × canescens). Immunogold labeling using polyclonal antibodies generated against His-tagged recombinant ISPS protein detected ca. 44% of ISPS in the stroma of the chloroplasts and ca. 56% of gold particles attached to the stromal-facing side of the thylakoid membranes. ISPS isolated from leaves exhibited the same biochemical properties as the recombinant ISPS without the plastid-targeting peptide heterologous expressed in E. coli, whereas an additional C- or N-terminal His-tag changed the biochemical features of the recombinant enzyme with regard to temperature, pH, and substrate dependence. In comparison to the closely related class of monoterpene synthases from angiosperms and ISPS of oaks, the most striking feature of the poplar ISPS is a cooperative substrate dependence which is characteristic to enzymes with positive substrate activation. The detection of four immunoreactive bands in poplar leaf extracts with isoelectric points from 5.0 to 5.5 and a native molecular weight of ca. 51 kDa give reason for future studies on post-translational modifications of ISPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DOXP/MEP:

1-deoxy- D-xylulose 5-phosphate/2- C-methyl-D-erythritol 4-phosphate

DMADP:

Dimethylallyl diphosphate

ISPS:

Isoprene synthase

VOC:

Volatile organic compounds

References

  • Agius L, Stubbs M (2000) Investigation of the mechanism by which glucose analogues cause translocation of glucokinase in heptacytes: evidence for two glucose binding sites. Biochem J 346:413–421

    Article  PubMed  CAS  Google Scholar 

  • Alonso WR, Croteau R (1993) Prenyltransferases and cyclases. Methods Plant Biochem 9:239–260

    CAS  Google Scholar 

  • Bisswanger H (1994) Enzymkinetik. Theorie und Methoden 2nd edn. VCH-Wiley, Weinheim, Germany

    Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann N, Schnitzler JP (2002a) Relationship between IDP isomerase activity and isoprene emission of oak leaves. Tree Physiol 22:1011–1018

    PubMed  Google Scholar 

  • Brüggemann N, Schnitzler JP (2002b) Diurnal variation of dimethylallyl diphosphate concentrations in oak (Quercus robur L.) leaves. Physiol Plant 115:190–196

    Article  PubMed  Google Scholar 

  • Cardenas ML, Rabajille E, Niemeyer H (1984) Supression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model. Eur J Biochem 145:163–171

    Article  PubMed  CAS  Google Scholar 

  • CRC (2003) CRC handbook of chemistry and physics, 84th edn, CRC, Boca Raton, USA

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway of terpenoids. Trends Plant Sci 6:78–84

    Article  PubMed  CAS  Google Scholar 

  • Eymery F, Rey P (1999) Immunocytolocalization of CDSP 32 and CDSP 34, two chloroplastic drought-induced stress proteins in Solanum tuberosum plants. Plant Physiol Biochem 37:305–312

    Article  CAS  Google Scholar 

  • Fischbach RJ, Zimmer I, Steinbrecher R, Pfichner A, Schnitzler JP (2000) Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L. Phytochemistry 54:257–265

    Article  PubMed  CAS  Google Scholar 

  • Groth G, Schirwitz K (1999) Rapid purification of membrane extrinsic F1-domain of chloroplast ATP synthase in monodisperse for suitable for 3D-crystallization. Eur J Biochem 260:15–21

    Article  PubMed  CAS  Google Scholar 

  • Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  • Kuzma J, Fall R (1993) Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101:435–440

    PubMed  CAS  Google Scholar 

  • Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler JP (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ 22:495–504

    Article  CAS  Google Scholar 

  • Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    Article  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Mayrhofer S, Heizmann U, Magel E, Eiblmeier M, Müller A, Rennenberg H, Hampp R, Schnitzler J-P, Kreuzwieser J (2004) Carbon balance in the leaves of young poplar trees. Plant Biol 6:730–745

    Article  PubMed  CAS  Google Scholar 

  • Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Jaeger CH, Adams III WW, Driggers EM, Silver GM, Fall R (1992) Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    PubMed  CAS  Google Scholar 

  • Parmryd I, Shipton CA, Swiezewska E, Dallner G, Andersson B (1997) Chloroplastic prenylated proteins. FEBS Lett 414:527–531

    Article  PubMed  CAS  Google Scholar 

  • Parmryd I, Andersson B, Dallner G (1999) Protein prenylation in spinach chloroplasts. Proc Natl Acad Sci USA 96:10074–10079

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen RA (1970) Isoprene: identified as a forest-type emission to the atmosphere. Environ Sci Technol 4:667–671

    Article  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  PubMed  CAS  Google Scholar 

  • Rübsamen H, Khandker R, Witzel H (1974) Sigmoidal kinetics of a monomeric ribonuclease I due to ligand-induced shifts of conformation equilibrium. Hoppe-Seyler’s Zeit f Physiol Chem 355:687–708

    Google Scholar 

  • Sanadze GA (1991) Isoprene effect light-dependent emission of isoprene by green parts of plants. In: Sanadze GA (ed) Trace gas emissions by plants. Academic, San Diego, USA, pp 135–152

    Google Scholar 

  • Schnitzler JP, Arenz R, Steinbrecher R, Lehning A (1996) Characterization of an isoprene synthase from leaves of Quercus petraea (Mattuschka) Liebl. Bot Acta 109:216–221

    CAS  Google Scholar 

  • Schnitzler JP, Jungblut TP, Feicht C, Köfferlein M, Langebartels C, Heller W, Sandermann Jr H (1997) UV-B induction of flavonoid biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Trees 11:162–168

    Article  Google Scholar 

  • Schnitzler JP, Steinbrecher R, Zimmer I, Steigner D, Fladung M (2004) Hybridisation of European oaks (Quercus ilex × Q. robur) results in a mixed isoprenoid emitter type. Plant Cell Environ 27:585–594

    Article  CAS  Google Scholar 

  • Scholefield PA, Kieron J, Doick KJ, Herbert B, Hewitt CN, Schnitzler JP, Pinelli P, Loreto F (2004) Impact of rising CO2 on VOC emissions: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:381–392

    Article  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Phys Plant Mol Biol 52:407–436

    Article  CAS  Google Scholar 

  • Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol 97:1588–1591

    Article  PubMed  CAS  Google Scholar 

  • Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016

    Article  PubMed  CAS  Google Scholar 

  • Smith MD, Licatalosi DD, Thompson JE (2000) Co-association of cytochrome f catabolites plastid-lipid-associated protein with chloroplast lipid particles. Plant Physiol 124:211–221

    Article  PubMed  CAS  Google Scholar 

  • Turner GT, Gershenzon J, Nielson EE, Froehlich JE, Croteau R (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Fall R (1996) Light-dependent isoprene emission. Characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts. Plant Physiol 112:171–182

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W, Kühnemann F (2004) Rapid regulation of the methylerythritol 4-pathway during isoprene synthesis. Plant Physiol 135:1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Xu LZ, Harrison RW, Weber IT, Pilkis SJ (1995) Human ß-cell glucokinase. J Biol Chem 270:9939–9946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Fenning (Max-Planck-Institute for Chemical Ecology, Jena, Germany) and B. Miller (University of Freiburg, Germany) for critical reading of the manuscript and helpful comments. In addition, we acknowledge the help of W. Heller (GSF Research Center, Neuherberg, Germany) who enabled the production of the antibody and A. Vieler (Technical University of Munich, Germany) for her technical assistance with the immunogold labeling. The work was financially supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the national joint research project ‘AFO2000’ (Atmosphären-Forschungsprogramm 2000) and the German Research Foundation (DFG) in the framework of the research project ‘Poplar—a model to address tree-specific questions’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Schnitzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzler, JP., Zimmer, I., Bachl, A. et al. Biochemical properties of isoprene synthase in poplar (Populus × canescens). Planta 222, 777–786 (2005). https://doi.org/10.1007/s00425-005-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0022-1

Keywords

Navigation