Skip to main content
Log in

Plant blue-light receptors

  • Progress Report
  • Published:
Planta Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

cry :

Cryptochrome

phot :

Phototropin

phy :

Phytochrome

References

  • Ataka K, Hegemann P, Heberle J (2003) Vibrational spectroscopy of an algal Phot-LOV1 domain probes the molecular changes associated with blue-light reception. Biophys J 84:466–477

    CAS  PubMed  Google Scholar 

  • Bouly J-P, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome 1. Eur J Biochem 270:2921–2928

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  CAS  PubMed  Google Scholar 

  • Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Trainer A, Getzoff ED (2003) Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell 11:59–67

    Article  CAS  PubMed  Google Scholar 

  • Christie J M, Swartz T E, Bogomolni R A, Briggs W R (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32:205–219

    Article  CAS  PubMed  Google Scholar 

  • Devlin PF (2003) Photoreceptors resetting the circadian clock. In: Batschauer A (ed) Photoreceptors and light signalling. Royal Society of Chemistry, Cambridge, UK, pp 343–368

  • El-Assal SED, Alonso-Blanco C, Peeters AJM, Wagemaker C, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol 133:1–13

    Article  Google Scholar 

  • Fankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16

    Article  CAS  PubMed  Google Scholar 

  • Folta KM, Lieg EJ, Duham T, Spalding EP (2003) Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R (2003) Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci USA 100:11795–11800

    Article  CAS  PubMed  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 10:489–490

    Article  CAS  PubMed  Google Scholar 

  • Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Nozaki D, Tokutomi S, Kagawa T, Wada M, Kandori H (2003) Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy. Biochemistry 42:8183–8191

    Article  CAS  PubMed  Google Scholar 

  • Kagawa T (2003) The phototropin family as photoreceptors for blue light-induced chloroplast relocation. J Plant Res 116:77–82

    CAS  PubMed  Google Scholar 

  • Kagawa T, Wada M (2002) Blue light-induced chloroplast relocation. Plant Cell Physiol 43:367–371

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, Asamizu E, Tabata S, Kanegae H, Takano M, Christie JM, Nagatani A, Briggs WR (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice and Chlamydomonas reinhardtii. Plant Physiol 129:762–773

    Article  CAS  PubMed  Google Scholar 

  • Kay CW, Schleicher E, Kuppig A, Hofner H, Rüdiger W, Schleicher M, Fischer M, Bacher A, Weber S, Richter G (2003) Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin. J Biol Chem 278:10973–82

    Article  CAS  PubMed  Google Scholar 

  • Kennis JT, van Stokkum IH, Crosson S, Gauden M, Moffat K, van Grondelle R (2004) The LOV2 domain of phototropin: a reversible photochromic switch. J Am Chem Soc 126:4512–4513

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Emi T, Tominaga M, Sakamoto K, Shigenaga A, Doi M, Shimazaki K (2003) Blue-light- and phosphorylation-dependent binding of a 14-3-3-protein to phototropins in stomatal guard cells of broad bean. Plant Physiol 133:1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Kleine T, Lockhart P, Batschauer A (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 35:93–103

    Article  CAS  PubMed  Google Scholar 

  • Kottke T, Heberle J, Hehn D, Dick B, Hegemann P (2003) Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys J 84:1192–1201

    CAS  PubMed  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell [Suppl] 14:S207–S225

    Google Scholar 

  • Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Hodgson DW, Campbell TJ (2003) Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol 133:1429–1436

    Article  CAS  PubMed  Google Scholar 

  • Losi A, Kottke T, Hegemann P (2004) Recording of blue light-induced energy and volume changes within the wild-type and mutated phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J 86:1051–1060

    CAS  PubMed  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    Article  CAS  PubMed  Google Scholar 

  • Neiss C, Saalfrank P (2003) Ab initio chemical investigation of the first steps of the photocycle of phototropin: a model study. Photochem Photobiol 77:101–109

    Article  CAS  PubMed  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1 and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228

    Article  CAS  PubMed  Google Scholar 

  • Salomon M (2003) Higher plant phototropins, photoreceptors not only for phototropism. In: Batschauer A (ed) Photoreceptors and light signalling. Royal Society of Chemistry, Cambridge, UK, pp 272–302

  • Salomon M, Knieb E, von Zeppelin T, Rüdiger W (2003) Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42:4217–4225

    Article  CAS  PubMed  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Ong M, Lin C (2003) Cryptochromes and their function in plant development. In: Batschauer A (ed) Photoreceptors and light signalling. Royal Society of Chemistry, Cambridge, UK, pp 303–327

  • Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417:763–67

    Article  CAS  PubMed  Google Scholar 

  • Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15:2421–2429

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782

    Article  CAS  PubMed  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  • Suetsugu N, Wada M (2003) Cryptogam blue-light photoreceptors. Curr Opin Plant Biol 6:91–96

    Article  CAS  PubMed  Google Scholar 

  • Van der Horst MA, Hellingwerf KJ (2004) Photoreceptor proteins, ‘star actor of modern times’: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res 37:13–20

    Article  PubMed  Google Scholar 

  • Wada M (2003) Blue light receptors in fern and moss In: Batschauer A (ed) Photoreceptors and light signalling. Royal Society of Chemistry, Cambridge, UK, pp 328–342

    Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Physiol Plant Mol Biol 54:455–469

    CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Birte Dohle for preparing the figure, and the Deutsche Forschungsgemeinschaft for the support of our research (grants BA985/7-1 and BA985/10-1 to A.B.) and a fellowship of the Graduiertenkolleg ‘Protein function at the atomic level’ (to R.B.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Batschauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, R., Batschauer, A. Plant blue-light receptors. Planta 220, 498–502 (2005). https://doi.org/10.1007/s00425-004-1418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1418-z

Keywords

Navigation