Skip to main content
Log in

A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract.

Jasmonates (JAs) regulate Arabidopsis thaliana (L.) Heynh. wound and defense responses, pollen development, and stress-related growth inhibition. Significantly, each of these responses requires COI1, an F-box protein. We fused firefly luciferase as a reporter to the JA-responsive promoter for the vegetative storage protein gene (VSP) and used this to screen for mutants that failed to express luciferase in the presence of JA, isolating a mutant designated coi1-16. Comparisons with coi1-1 and jar1-1 plants indicated that coi1-16 was only slightly more sensitive to JA than coi1-1 plants. However, whilst coi1-16 plants failed to produce viable pollen at 22 °C, they were fertile at 16 °C. Therefore, unlike the other coi1 mutants, coi1-16 could be maintained as a pure line and did not require selection. We have used coi1-16 seeds to define novel interactions between JA and other hormone signalling pathways in seed germination and in the development of young seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, C., Turner, J.G. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215, 549–556 (2002). https://doi.org/10.1007/s00425-002-0787-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-002-0787-4

Navigation