Skip to main content
Log in

The molecular basis of neutral aminoacidurias

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Recent success in the molecular cloning and identification of apical neutral amino acid transporters has shed a new light on inherited neutral amino acidurias, such as Hartnup disorder and Iminoglycinuria. Hartnup disorder is caused by mutations in the neutral amino acid transporter B0 AT1 (SLC6A19). The transporter is found in kidney and intestine, where it is involved in the resorption of all neutral amino acids. The molecular defect underlying Iminoglycinuria has not yet been identified. However, two transporters, the proton amino acid transporter PAT1 (SLC36A1) and the IMINO transporter (SLC6A20) appear to play key roles in the resorption of glycine and proline. A model is presented, involving all three transporters that can explain the phenotypic variability of iminoglycinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In this review, we will use the term ‘transport system’, when referring to transport activities determined in tissue preparations and use the name of cloned cDNAs when referring to the transport proteins.

References

  1. Anderson CM et al (2004) H+/amino acid transporter 1 (PAT1) is the imino acid carrier: an intestinal nutrient/drug transporter in human and rat. Gastroenterology 127:1410–1422

    PubMed  Google Scholar 

  2. Avissar NE, Ryan CK, Ganapathy V, Sax HC (2001) Na(+)-dependent neutral amino acid transporter ATB(0) is a rabbit epithelial cell brush-border protein. Am J Physiol Cell Physiol 281:C963–C971

    PubMed  Google Scholar 

  3. Baron DN, Dent CE, Harris H, Hart EW, Jepson JB (1956) Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal aminoaciduria and other bizarre biochemical features. Lancet 2:421–428

    Article  Google Scholar 

  4. Bohmer C et al (2005) Characterization of mouse amino acid transporter B 0AT1 (slc6a19). Biochem J (in press)

  5. Boll M, Foltz M, Rubio-Aliaga I, Kottra G, Daniel H (2002) Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J Biol Chem 277:22966–22973

    Article  PubMed  Google Scholar 

  6. Boll M et al (2003) Substrate recognition by the mammalian proton-dependent amino acid transporter PAT1. Mol Membr Biol 20:261–269

    Article  PubMed  Google Scholar 

  7. Broer A et al (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 73:2184–2194

    PubMed  Google Scholar 

  8. Broer A, Wagner C, Lang F, Broer S (2000) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 346 Pt 3:705–710

    Article  PubMed  Google Scholar 

  9. Broer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Broer S (2004) Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 279:24467–24476

    Article  PubMed  Google Scholar 

  10. Chesney RW (2001) Iminoglycinuria. In: Scriver CH, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, NY, pp 4971–4982

    Google Scholar 

  11. Curran PF, Schultz SG, Chez RA, Fuisz RE (1967) Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol 50:1261–1286

    Article  PubMed  Google Scholar 

  12. Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  PubMed  Google Scholar 

  13. del Castillo JR, Sulbaran-Carrasco MC, Burguillos L (2002) Glutamine transport in isolated epithelial intestinal cells. Identification of a Na+-dependent transport mechanism, highly specific for glutamine. Pflugers Arch 445:413–422

    Article  PubMed  Google Scholar 

  14. Doyle FA, McGivan JD (1992) The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles. Biochim Biophys Acta 1104:55–62

    PubMed  Google Scholar 

  15. Evers J, Murer H, Kinne R (1976) Phenylalanine uptake in isolated renal brush border vesicles. Biochim Biophys Acta 426:598–615

    PubMed  Google Scholar 

  16. Fass SJ, Hammerman MR, Sacktor B (1977) Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid l-alanine. J Biol Chem 252:583–590

    PubMed  Google Scholar 

  17. Foltz M, Mertl M, Dietz V, Boll M, Kottra G, Daniel H (2005) Kinetics of bidirectional H+ and substrate transport by the proton-dependent amino acid symporter PAT1. Biochem J 386:607–616

    Article  PubMed  Google Scholar 

  18. Ganapathy V, Roesel RA, Howard JC, Leibach FH (1983) Interaction of proline, 5-oxoproline, and pipecolic acid for renal transport in the rabbit. J Biol Chem 258:2266–2272

    PubMed  Google Scholar 

  19. Goodman SI, McIntyre CA Jr, O’Brien D (1967) Impaired intestinal transport of proline in a patient with familial iminoaciduria. J Pediatr 71:246–249

    PubMed  Google Scholar 

  20. Green BJ, Lee CS, Rasko JE (2004) Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR. J Gene Med 6:249–259

    Article  PubMed  Google Scholar 

  21. Hajjar JJ, Curran PF (1970) Characteristics of the amino acid transport system in the mucosal border of rabbit ileum. J Gen Physiol 56:673–691

    Article  PubMed  Google Scholar 

  22. Hammerman MR, Sacktor B (1977) Transport of amino acids in renal brush border membrane vesicles. Uptake of l-proline. J Biol Chem 252:591–595

    PubMed  Google Scholar 

  23. Hillman RE, Albrecht I, Rosenberg LE (1968) Identification and analysis of multiple glycine transport systems in isolated mammalian renal tubules. J Biol Chem 243:5566–5571

    PubMed  Google Scholar 

  24. Hoyer J, Gogelein H (1991) Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording. J Gen Physiol 97:1073–1094

    Article  PubMed  Google Scholar 

  25. Jonas AJ, Butler IJ (1989) Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest 84:200–204

    PubMed  Google Scholar 

  26. Jorgensen KE, Kragh-Hansen U, Sheikh MI (1990) Transport of leucine, isoleucine and valine by luminal membrane vesicles from rabbit proximal tubule. J Physiol 422:41–54

    PubMed  Google Scholar 

  27. Kleta R et al (2004) Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet 36:999–1002

    Article  PubMed  Google Scholar 

  28. Kowalczuk S, Broer A, Munzinger M, Tietze N, Klingel K, Broer S (2005) Molecular cloning of the mouse IMINO system: an Na+- and Cl -dependent proline transporter. Biochem J 386:417–422

    Article  PubMed  Google Scholar 

  29. Kragh-Hansen U, Sheikh MI (1984) Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney. J Physiol 354:55–67

    PubMed  Google Scholar 

  30. Kragh-Hansen U, Roigaard-Petersen H, Jacobsen C, Sheikh MI (1984) Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems. Biochem J 220:15–24

    PubMed  Google Scholar 

  31. Levy LL (2001) Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, NY, pp 4957–4969

    Google Scholar 

  32. Lynch AM, McGivan JD (1987) Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney. Biochim Biophys Acta 899:176–184

    PubMed  Google Scholar 

  33. Maenz DD, Patience JF (1992) l-threonine transport in pig jejunal brush border membrane vesicles. Functional characterization of the unique system B in the intestinal epithelium. J Biol Chem 267:22079–22086

    PubMed  Google Scholar 

  34. McNamara PD, Ozegovic B, Pepe LM, Segal S (1976) Proline and glycine uptake by renal brushborder membrane vesicles. Proc Natl Acad Sci USA 73:4521–4525

    PubMed  Google Scholar 

  35. Morikawa T, Tada K, Ando T, Yoshida T, Yokoyama Y, Arakawa T (1966) Prolinuria: defect in intestinal absorption of imino acids and glycine. Tohoku J Exp Med 90:105–116

    PubMed  Google Scholar 

  36. Munck BG, Munck LK (1994a) Phenylalanine transport in rabbit small intestine. J Physiol 480(Pt 1):99–107

    PubMed  Google Scholar 

  37. Munck LK, Munck BG (1994b) Amino acid transport in the small intestine. Physiol Res 43:335–345

    PubMed  Google Scholar 

  38. Munck LK, Munck BG (1994c) Chloride-dependent intestinal transport of imino and beta-amino acids in the guinea pig and rat. Am J Physiol 266:R997–1007

    PubMed  Google Scholar 

  39. Munck LK, Munck BG (1995) Transport of glycine and lysine on the chloride-dependent beta-alanine (B0,+) carrier in rabbit small intestine. Biochim Biophys Acta 1235:93–99

    PubMed  Google Scholar 

  40. Munck BG, Munck LK (1999) Effects of pH changes on systems ASC and B in rabbit ileum. Am J Physiol 276:G173–G184

    PubMed  Google Scholar 

  41. Munck BG, Munck LK, Rasmussen SN, Polache A (1994) Specificity of the imino acid carrier in rat small intestine. Am J Physiol 266:R1154–R1161

    PubMed  Google Scholar 

  42. Munck LK, Grondahl ML, Thorboll JE, Skadhauge E, Munck BG (2000) Transport of neutral, cationic and anionic amino acids by systems B, b(o,+), X(AG), and ASC in swine small intestine. Comp Biochem Physiol A Mol Integr Physiol 126:527–537

    Article  PubMed  Google Scholar 

  43. Nakanishi T et al (2001) Na+- and Cl -coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol 532:297–304

    Article  PubMed  Google Scholar 

  44. Nozaki J et al (2001) Homozygosity mapping to chromosome 5p15 of a gene responsible for Hartnup disorder. Biochem Biophys Res Commun 284:255–260

    Article  PubMed  Google Scholar 

  45. Obermuller N, Kranzlin B, Verma R, Gretz N, Kriz W, Witzgall R (1997) Renal osmotic stress-induced cotransporter: expression in the newborn, adult and post-ischemic rat kidney. Kidney Int 52:1584–1592

    PubMed  Google Scholar 

  46. Palacin M, Goodyer P, Nunes V, Gasparini P (2001) Cystinuria. In: Scriver CR, Beaudet AL, Sly SW, Valle D (eds) Metabolic and molecular basis of inherited diseases, 9th edn. McGraw-Hill, NY, pp 4909–4932

    Google Scholar 

  47. Quan H et al (2004) Hypertension and impaired glycine handling in mice lacking the orphan transporter XT2. Mol Cell Biol 24:4166–4173

    Article  PubMed  Google Scholar 

  48. Rajendran VM, Barry JA, Kleinman JG, Ramaswamy K (1987) Proton gradient-dependent transport of glycine in rabbit renal brush-border membrane vesicles. J Biol Chem 262:14974–14977

    PubMed  Google Scholar 

  49. Roigaard-Petersen H, Jacobsen C, Iqbal Sheikh M (1987) H+-l-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am J Physiol 253:F15–F20

    PubMed  Google Scholar 

  50. Samarzija I, Fromter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pflugers Arch 393:119–209

    PubMed  Google Scholar 

  51. Scriver CR (1968) Renal tubular transport of proline, hydroxyproline, and glycine. 3. Genetic basis for more than one mode of transport in human kidney. J Clin Invest 47:823–835

    PubMed  Google Scholar 

  52. Scriver CR, Efron ML, Schafer IA (1964) Renal tubular transport of proline, hydroxyproline, and glycine in health and in familial hyperprolinemia. J Clin Invest 43:374–385

    PubMed  Google Scholar 

  53. Scriver CR et al (1987) The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am J Hum Genet 40:401–412

    PubMed  Google Scholar 

  54. Seow HF et al (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36:1003–1007

    Article  PubMed  Google Scholar 

  55. Sepulveda FV, Smith MW (1978) Discrimination between different entry mechanisms for neutral amino acids in rabbit ileal mucosa. J Physiol 282:73–90

    PubMed  Google Scholar 

  56. Silbernagl S, Foulkes EC, Deetjen P (1975) Renal transport of amino acids. Rev Physiol Biochem Pharmacol 74:105–167

    PubMed  Google Scholar 

  57. Sloan JL, Mager S (1999) Cloning and functional expression of a human Na(+) and Cl(−)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem 274:23740–23745

    Article  PubMed  Google Scholar 

  58. Stevens BR, Kaunitz JD, Wright EM (1984) Intestinal transport of amino acids and sugars: advances using membrane vesicles. Annu Rev Physiol 46:417–433

    Article  PubMed  Google Scholar 

  59. Stevens BR, Ross HJ, Wright EM (1982) Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol 66:213–225

    Article  PubMed  Google Scholar 

  60. Stevens BR, Wright EM (1985a) Kinetic model of the brush-border proline/sodium (IMINO) cotransporter. Ann N Y Acad Sci 456:115–117

    PubMed  Google Scholar 

  61. Stevens BR, Wright EM (1985b) Substrate specificity of the intestinal brush-border proline/sodium (IMINO) transporter. J Membr Biol 87:27–34

    Article  PubMed  Google Scholar 

  62. Stevens BR, Wright EM (1987) Kinetics of the intestinal brush border proline (Imino) carrier. J Biol Chem 262:6546–6551

    PubMed  Google Scholar 

  63. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA (2005) Identification of Mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem 280:8974–8984

    Article  PubMed  Google Scholar 

  64. Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    Article  PubMed  Google Scholar 

  65. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447:532–542

    Article  PubMed  Google Scholar 

  66. Verrey F, Meier C, Rossier G, Kuhn LC (2000) Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch 440:503–512

    PubMed  Google Scholar 

  67. Wilcken B, Yu JS, Brown DA (1977) Natural history of Hartnup disease. Arch Dis Child 52:38–40

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bröer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bröer, A., Cavanaugh, J.A., Rasko, J.E.J. et al. The molecular basis of neutral aminoacidurias. Pflugers Arch - Eur J Physiol 451, 511–517 (2006). https://doi.org/10.1007/s00424-005-1481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1481-8

Keywords

Navigation