Skip to main content

Advertisement

Log in

The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Among the “classical” or “canonical” transient receptor potential (TRPC) family, the TRPC3, -6, and -7 channels share 75% amino acid identity and are gated by exposure to diacylglycerol. TRPC3, TRPC6, and TRPC7 interact physically and coassemble to form functional tetrameric channels. This review focuses on the TRPC3/6/7 subfamily and describes their functional properties and regulation as homomers obtained from overexpression studies in cell lines. It also summarizes their heteromultimerization potential in vitro and in vivo and presents initial data concerning their physiological functions analyzed in isolated tissues with downregulated channel activity and gene-deficient mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42:543–549

    Article  CAS  PubMed  Google Scholar 

  2. Bandyopadhyay BC, Swaim WD, Liu X, Redmann R, Patterson RL, Ambudkar IS (2005) Apical localization of a functional TRPC3/TPRC6-Ca2+-signalling complex in polarized epithelial cells: role in apical Ca2+ influx. J Biol Chem 280:12908–12916

    Article  CAS  PubMed  Google Scholar 

  3. Basora N, Boulay G, Bilodeau L, Rousseau E, and Payet M (2003) 20-Hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716

    Article  CAS  PubMed  Google Scholar 

  4. Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559(3):685–706

    CAS  PubMed  Google Scholar 

  5. Berridge MJ (1997) Elementary and global aspects of calcium imaging. J Physiol 499:291–306

    CAS  PubMed  Google Scholar 

  6. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    Article  CAS  PubMed  Google Scholar 

  7. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in Ca2+ entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    Article  CAS  PubMed  Google Scholar 

  8. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci USA 96:14955–14960

    CAS  PubMed  Google Scholar 

  9. Boulay G (2002) Ca2+ calmodulin regulates receptor-operated Ca2+ entry of TRPC6 in HEK-293c cells calmodulin. Cell Calcium 32:201–207

    Article  CAS  PubMed  Google Scholar 

  10. Cayouette S, Lussier MP, Mathieu E-L, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein coupled receptor activation. J Biol Chem 279:7241–7246

    Article  CAS  PubMed  Google Scholar 

  11. Chu X, Tong Q, Cheung JY, Wozney J, Conrad K, Mazack V, Zhang W, Stahl R, Barber DL, Miller BA (2004) Interaction of TRPC2 and TRPC6 in erythropoietin modulation of calcium influx. J Biol Chem 279:10514–10522

    Article  CAS  PubMed  Google Scholar 

  12. Clapham D (2003). TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich A, Gollasch M, Chubanov V, Mederos y Schnitzler M, Dubrovska G, Herz U, Renz H, Gudermann T, Birnbaumer L (2003) Studies on TRPC6 deficient mice reveal its non-redundant role in the regulation of smooth muscle tone. Naunyn-Schmiedebergs Arch Pharmacol 367(Suppl):238

    Google Scholar 

  14. Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278:47842–47852

    Article  CAS  PubMed  Google Scholar 

  15. Dietrich A, Mederos y Schnitzler M, Storch U, Lauterbach B, Essin K, Obst M, Gross V, Gollasch M, Birnbaumer L, Gudermann T (2004) TRPC6 deficient mice develop an elevated blood-pressure and an early onset of the myogenic tone in cerebral arteries. Naunyn-Schmiedebergs Arch Pharmacol 369(Suppl):242

    Google Scholar 

  16. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    Article  CAS  PubMed  Google Scholar 

  17. Groschner K, Rosker C, Lukas M (2004) Role of TRP channels in oxidative stress. Novartis Found Symp 258:222–235

    CAS  PubMed  Google Scholar 

  18. Gudermann T, Mederos y Schnitzler M, Dietrich A (2004) Receptor-operated cation entry—more than esoteric terminology? Science STKE 243:pe35

    Article  Google Scholar 

  19. Guillemette J, Caron AZ, Regimbald-Dumas Y, Argiun G, Mignery GA, Boulay G, Guilemette G (2005) Expression of a truncated form of inositol 1,4,5-trisphosphate receptor type III in the cytosol of DT40 triple inositol 1,4,5-trisphosphate receptor-knockout cells. Cell Calcium 37:97–104

    Article  CAS  PubMed  Google Scholar 

  20. Halaszovich CR, Zitt C, Jüngling E, Lückhoff A (2000) Inhibition of TRP3 channels by lanthanides. J Biol Chem 275:37423–37428

    Article  CAS  PubMed  Google Scholar 

  21. Hassock SR, Zhu MX, Trost C, Flockerzi V, Authi KS (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100:2801–2811

    Article  CAS  PubMed  Google Scholar 

  22. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  24. Hofmann T, Schaefer M, Schultz G, and Gudermann T (2000) Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med 78:14–25

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466

    Article  CAS  PubMed  Google Scholar 

  26. Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422(3):333–338

    Article  CAS  PubMed  Google Scholar 

  27. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332

    CAS  PubMed  Google Scholar 

  28. Irvine RF (1992) Inositol phosphates and Ca2+ entry: toward a proliferation or a simplification. FASEB J 6:3085–3091

    CAS  PubMed  Google Scholar 

  29. Jung S, Strotmann R, Schultz G, Plant TD (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol 282:C347–C359

    CAS  Google Scholar 

  30. Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action ar extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571

    Article  CAS  PubMed  Google Scholar 

  31. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482

    Article  CAS  PubMed  Google Scholar 

  32. Large WA (2002) Receptor-operated Ca2+-permeable nonselective cation channels in vascular smooth muscle: a physiological perspective. J Cardiovasc Electrophysiol 13:493–501

    Article  PubMed  Google Scholar 

  33. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MX, Lee KP, So K, Kim W (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol 284:G604–G616

    CAS  Google Scholar 

  34. Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G (2005) The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+. Cell Signal 17:437–445

    Article  CAS  PubMed  Google Scholar 

  35. Li H-S, Shawn X-Z, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24:261–273

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Westwick J, Poll C (2003) Transient receptor potential (TRP) channels as potential drug targets in respiratory disease. Cell Calcium 33:551–558

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Jia Y-C, Cui K, Li N, Zheng Z-Y, Wang Y-Z, Yuan X-B (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain derived neurotrophic factor. Nature 434:894–898

    Google Scholar 

  38. Lin M-J, Leung GPH, Zhang W-M, Yang X-R, Yip K-P, Tse C-M, Sham SK (2004) Chronic hypoxia induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells. Circ Res 95:496–505

    Article  CAS  PubMed  Google Scholar 

  39. Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am J Physiol 287:C1709–C1716

    Article  CAS  PubMed  Google Scholar 

  40. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    CAS  PubMed  Google Scholar 

  41. Lockwich TP, Singh B, Liu X, Ambudkar IS (2001) Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. J Biol Chem 276:4201–4208

    Article  Google Scholar 

  42. Lu P-J, Hsu A-L, Wang D-S, Chen C-S (1998) Phosphatidylinositol 3,4,5-trisphosphate triggers platelet aggregation by activating Ca2+ influx. Biochemistry 37:9776–9783

    Article  CAS  PubMed  Google Scholar 

  43. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    Article  CAS  PubMed  Google Scholar 

  44. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin like repeat domain of TRPC. J Biol Chem 280:19393–19400

    Google Scholar 

  45. Mederos y Schnitzler M, Storch U, Dietrich A, Gudermann T (2004) Increased currents in isolated smooth muscle cells of TRPC6-deficient mice. Naunyn-Schmiedebergs Arch Pharmacol 369(Suppl):247

    Google Scholar 

  46. Montell (2005) The TRP superfamily of cation channels. Science STKE. 2005(272):re3

  47. Ohki G, Miyoshi M, Murata K, Ishibashi M, Imai M, Suzuki M (2000) A calcium-activated cation current by an alternative spliced form of Trp3 in the heart. J Biol Chem 275:39055–39060

    Article  CAS  PubMed  Google Scholar 

  48. Okada T, Inoue R, Yamazaki K, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  CAS  PubMed  Google Scholar 

  49. Otsuka Y, Sakagami H, Owada Y, Kondo H (1998) Differential location of mRNAs for mammalian trps, presumptive capacitative calcium entry channels, in the adult mouse brain. Tohoku J Exp Med 185:139–146

    CAS  PubMed  Google Scholar 

  50. Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signalling pathway. Science 307:600–604

    Article  CAS  PubMed  Google Scholar 

  51. Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion like coupling model. Cell 98:487–499

    CAS  PubMed  Google Scholar 

  52. Putney JW Jr (2004) The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14:282–286

    Article  CAS  PubMed  Google Scholar 

  53. Philipp S, Strauss B, Hirnet D, Wissenbach U, Mery L, Flockerzi V, Hoth M (2003) TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem 278:26629–26638

    Article  CAS  PubMed  Google Scholar 

  54. Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–749

    Article  CAS  PubMed  Google Scholar 

  55. Reading SA, Earley S, Waldron BJ, Welsh DG, Brayden JE (2005) TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol 288:H2055–H2061

    Google Scholar 

  56. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AR, Davis JB, Benham CD, Pangalos MN (2002) Cloning and functional expression of human short TRP7 a candidate protein for store operated Ca2+ influx. J Biol Chem 277:12302–12309

    Article  CAS  PubMed  Google Scholar 

  57. Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704

    Article  CAS  PubMed  Google Scholar 

  58. Schilling WP (2001) TRP proteins. Novel therapeutic targets for regional blood pressure control? Circ Res 88:256–259

    CAS  PubMed  Google Scholar 

  59. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432

    Article  CAS  PubMed  Google Scholar 

  60. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bolimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15:635–646

    Article  CAS  PubMed  Google Scholar 

  61. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120

    Article  CAS  PubMed  Google Scholar 

  62. Strübing C, Kaprivinski G, Kaprivinski L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  63. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of Trp channels. J Biol Chem 276:21303–21310

    Article  CAS  PubMed  Google Scholar 

  64. Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623

    Article  CAS  PubMed  Google Scholar 

  65. Trebak M, Bird GS, McKay RR, Birnbaumer L, Putney JW Jr (2003a) Signaling mechanism for receptor-activated TRPC3 channels. J Biol Chem 278:16244–16252

    Article  CAS  PubMed  Google Scholar 

  66. Trebak M, Vazques G, Bird GS, Putney JW Jr (2003b) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461

    Article  CAS  Google Scholar 

  67. Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr (2005) Negative regulation of TRPC3 channels by protein kinase C mediated phosphorylation of serine 712. Mol Pharmacol 67:558–563

    Article  CAS  PubMed  Google Scholar 

  68. Tseng P-H, Lin H-P, Hu H, Wang C, Zhu MX, Chen C-S (2004) The Canonical Transient Receptor Potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708

    Article  CAS  PubMed  Google Scholar 

  69. Vannier B, Zhu X, Brown D, Birnbaumer L (1998) The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273:8675–8679

    Article  CAS  PubMed  Google Scholar 

  70. van Rossum D, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Google Scholar 

  71. Vazques G, Lièvremont J-P, Bird GStJ, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and independent store-operated cation channels in DT 40 avian B-lymphocytes. Proc Natl Acad Sci USA 98:11777–11782

    Article  CAS  PubMed  Google Scholar 

  72. Vazquez G, Wedel BJ, Trebak M, Bird GS, Putney JW Jr (2003) Expression level of TRPC3 channel determines its mechanism of activation. J Biol Chem 278:21649–21654

    Article  CAS  PubMed  Google Scholar 

  73. Vazques G, Wedel BJ, Kawasaki BT, Bird GStJ, Putney JW Jr (2004) Obligatory Role of src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    Article  CAS  PubMed  Google Scholar 

  74. Venkatachalam K, Ma T, Ford DL, Gill DL (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple InsP3 receptor-knockout cells. J Biol Chem 2768:33980–33985

    Article  Google Scholar 

  75. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerin and protein kinase C. J Biol Chem 278:29031–29040

    Article  CAS  PubMed  Google Scholar 

  76. Wedel BJ, Vazques G, McKay RR, Bird GStJ, Putney JW Jr (2003) A calmodulin/inositol 1,4,5 triphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem 278:25758–25765

    Article  CAS  PubMed  Google Scholar 

  77. Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    Article  CAS  PubMed  Google Scholar 

  78. Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–485

    Article  CAS  PubMed  Google Scholar 

  79. Yildirim E, Kawasaki BT, Birnbaumer L (2005) Molecular cloning of TRPC3a, an N-terminally extended, store-operated variant of the human C3 transient receptor potential channel. Proc Natl Acad Sci USA 102:3307–3311

    Article  CAS  PubMed  Google Scholar 

  80. Yip H, Chan W-Y, Leung P-C, Kwan H-Y, Liu C, Huang Y, Michel V, Yew D T-W, Yao X (2004) Expression of TRPC homologues in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122:553–561

    Article  CAS  PubMed  Google Scholar 

  81. Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg JW, Rothman A, Yuan JX-J (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol 284:C316-C330

    CAS  Google Scholar 

  82. Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan, JX.-J (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866

    Article  CAS  PubMed  Google Scholar 

  83. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem M, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 144:777–789

    Article  Google Scholar 

  84. Zhang L, Saffen D (2001) Muscarinic acetylcholine receptor regulation of TRPC6 Ca2+ channel isoforms. J Biol Chem 276:13331–13339

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani S, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci USA 98:3168–3173

    Article  CAS  PubMed  Google Scholar 

  86. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    Article  CAS  PubMed  Google Scholar 

  87. Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 273:133–142

    Article  CAS  PubMed  Google Scholar 

  88. Zitt C, Obukhov AG, Strübing C, Zobel A, Kalkbrenner F, Lückhoff A, Schultz G (1997) Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 138:1333–41

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, A., Kalwa, H., Rost, B. et al. The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch - Eur J Physiol 451, 72–80 (2005). https://doi.org/10.1007/s00424-005-1460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1460-0

Keywords

Navigation