Skip to main content
Log in

The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The vesicular amine transporters (VATs) are expressed as integral proteins of the lipid bilayer membrane of secretory vesicles in neuronal and endocrine cells. Their function is to allow the transport of acetylcholine (by the vesicular acetylcholine transporter VAChT; SLC18A3) and biogenic amines (by the vesicular monoamine transporters VMAT1 and VMAT2; SLC18A1 and SLC18A2) into secretory vesicles, which then discharge them into the extracellular space by exocytosis. Transport of positively charged amines by members of the SLC18 family in all cases utilizes an electrochemical gradient across the vesicular membrane established by proton pumping into the vesicle via a vacuolar ATPase; the amine is accumulated in the vesicle at the expense of the proton gradient, at a ratio of one translocated amine per two translocated protons. The members of the SLC18 family have become important histochemical markers for chemical coding in neuroendocrine tissues and cells. The structural basis of their remarkable ability to transport positively charged amines against a very large concentration gradient, as well as potential disease association with impaired transporter function and expression, are under intense investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–F.

Similar content being viewed by others

Notes

  1. *Note added in proof: VMAT2 is expressed in human pancreatic endocrine cells containing insulin but absent from islet cells expressing glucagon, somatostatin or pancreatic polypeptide [Anlauf M, Eissele R, Schäfer MK-H, Eiden LE, Arnold R, Pauser U, Klöppel G, Weihe E (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem (In press)].

References

  1. Alfonso A, Grundahl K, Duerr JS, Han H-P, Rand JB (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261:617–619

    CAS  PubMed  Google Scholar 

  2. Balan IS, Ugrumov MV, Calas A, Mailly P, Kreiger M, Thibault J (2000) Tyrosine hydroxylase-expressing and/or aromaticl-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 425:167–176

    Article  CAS  PubMed  Google Scholar 

  3. Bruce G, Wainer BH, Hersh LB (1985) Immunoaffinity purification of human choline acetyltransferase: comparison of the brain and placental enzymes. J Neurochem 45:611–620

    CAS  PubMed  Google Scholar 

  4. Duerr JS, Frisby DL, Gaskin J, Duke A, Asermely K, Huddleston D, Eiden LE, Rand JB (1999) The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 19:72–84

    CAS  PubMed  Google Scholar 

  5. Efange SMN (2000) In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter. FASEB J 14:2401–2413

    Article  CAS  PubMed  Google Scholar 

  6. Eiden LE (1998) The cholinergic gene locus. J Neurochem 70:2227–2240

    CAS  PubMed  Google Scholar 

  7. Eiden LE (2000) The vesicular neurotransmitter transporters: current perspectives and future prospects. FASEB J 14:2396–2400

    Article  CAS  PubMed  Google Scholar 

  8. Eiden LE, Schütz B, Anlauf M, Depboylu C, Schäfer MK-H, Weihe E (2002) In: T. Nagatsu, Nabeshima T, McCarty R, Goldstein DS (eds) Catecholamine research: from molecular insights to clinical medicine. Kluwer, New York, pp 23–33

  9. Engel AG, Ohno K (2001) In: Pourmand R, Harati Y (eds) Neuromuscular disorders. Williams and Wilkins, Philadelphia, pp 203–215

  10. Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem 61:2314–2317

    CAS  PubMed  Google Scholar 

  11. Erickson JD, Eiden LE, Hoffman B (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA 89:10993–10997

    CAS  PubMed  Google Scholar 

  12. Erickson JD, Varoqui H (2000) Molecular analysis of vesicular amine transporter function and targeting to secretory organelles. FASEB J 14:2450–2458

    Article  CAS  PubMed  Google Scholar 

  13. Erickson JD, Varoqui H, Schäfer M, Diebler M-F, Weihe E, Modi W, Rand J, Eiden LE, Bonner TI, Usdin T (1994) Functional characterization of the mammalian vesicular acetylcholine transporter and its expression from a 'cholinergic' gene locus. J Biol Chem 269:21929–21932

    CAS  PubMed  Google Scholar 

  14. Erickson JD, Eiden LE, Schäfer MK-H, Weihe E (1995) Reserpine- and tetrabenazine-sensitive transport of3H-histamine by the neuronal isoform of the vesicular monoamine transporter. J Mol Neurosci 6:277–287

    CAS  PubMed  Google Scholar 

  15. Erickson JD, Schäfer MK-H, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 93:5166–5171

    CAS  PubMed  Google Scholar 

  16. Fon EA, Pothos EN, Sun B-C, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    CAS  PubMed  Google Scholar 

  17. Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJ (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695

    CAS  PubMed  Google Scholar 

  18. Gutman N, Steiner-Mordoch S, Schuldiner S (2003) An amino acid cluster around the essential Glu-14 is part of the substrate- and proton-binding domain of EmrE, a multidrug transporter from Escherichia coli. J Biol Chem 278:16082–16087

    Article  CAS  PubMed  Google Scholar 

  19. Howell M, Shirvan A, Stern-Bach Y, Steiner-Mordoch S, Strasser JE, Dean GE, Schuldiner S (1994) Cloning and functional expression of a tetrabenazine sensitive vesicular monoamine transporter from bovine chromaffin granules. FEBS Lett 338:16–22

    Article  CAS  PubMed  Google Scholar 

  20. Kim M-H, Lu M, Lim E-J, Chai Y-G, Hersh LB (1999) Mutational analysis of aspartate residues in the transmembrane regions and cytoplasmic loops of rat vesicular acetylcholine transporter. J Biol Chem 274:673–680

    Article  CAS  PubMed  Google Scholar 

  21. Lebrand C, Cases O, Wehrlé R, Blakely RD, Edwards RH, Gaspar P (1998) Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol. 401:506–524

    Google Scholar 

  22. Liu Y, Krantz DE, Waites C, Edwards RH (1999) Membrane trafficking of neurotransmitter transporters in the regulation of synaptic transmission. Trends Cell Biol 9:356–363

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Roghani A, Edwards RH (1992) Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc Natl Acad Sci USA 89:9074–9078

    CAS  PubMed  Google Scholar 

  24. Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D, Brecha N, Edwards RH (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70:539–551

    CAS  PubMed  Google Scholar 

  25. Merickel A, Edwards RH (1995) Transport of histamine by vesicular monoamine transporter-2. Neuropharmacology 34:1543–1547

    Article  CAS  PubMed  Google Scholar 

  26. Merickel A, Rosandich P, Peter D, Edwards RH (1995) Identification of residues involved in substrate recognition by a vesicular monoamine transporter. J Biol Chem 270:25798–25804

    Article  CAS  PubMed  Google Scholar 

  27. Merickel A, Kaback HR, Edwards RH (1997) Charged residues in transmembrane domains II and XI of a vesicular monoamine transporter form a charge pair that promotes high affinity substrate recognition. J Biol Chem 272:5403–5408

    Article  CAS  PubMed  Google Scholar 

  28. Ninio S, Schuldiner S (2003) Characterization of an archaeal multidrug transporter with a unique amino acid composition. J Biol Chem 278:12000–12005

    Article  CAS  PubMed  Google Scholar 

  29. Parsons SM (2000) Transport mechanisms in acetylcholine and monoamine storage. FASEB J 14:2423–2434

    Article  CAS  PubMed  Google Scholar 

  30. Parsons SM, Prior C, Marshall IG (1993) Acetylcholine transport, storage, and release. Int Rev Neurobiol 35:279–390

    CAS  PubMed  Google Scholar 

  31. Paulsen IT, Skurray RA (1993) Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes—an analysis. Gene 124:1–11

    CAS  PubMed  Google Scholar 

  32. Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15:6179–6188

    CAS  PubMed  Google Scholar 

  33. Rand JB, Duerr JS, Frisby DL (2000) Neurogenetics of vesicular transporters in C. elegans. FASEB J 14:2414–2422

    Article  CAS  PubMed  Google Scholar 

  34. Rost B (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol 266:525–539

    CAS  PubMed  Google Scholar 

  35. Rost B, Fariselli P, Casadio R (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci 7:1704–1718

    Google Scholar 

  36. Schuldiner S, Shirvan A, Stern-Bach Y, Steiner-Mordoch S, Yelin R, Laskar O (1994) From bacterial antibiotic resistance to neurotransmitter uptake. A common theme of cell survival. Ann NY Acad Sci 733:174–184

    CAS  PubMed  Google Scholar 

  37. Schuldiner S, Shirvan A, Linial M (1995) Vesicular neurotransmitter transporters: from bacteria to humans. Physiol Rev 75:369–392

    CAS  PubMed  Google Scholar 

  38. Schütz B, Schäfer MK-H, Eiden LE, Weihe E (1998) Vesicular amine transporter expression and isoform selection in developing brain, peripheral nervous system and gut. Dev Brain Res 106:181–204

    Article  Google Scholar 

  39. Steiner-Mordoch S, Shirvan A, Schuldiner S (1996) Modification of the pH profile and tetrabenazine sensitivity of rat VMAT1 by replacement of aspartate 404 with glutamate. J Biol Chem 271:13048–13054

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, Przedborski S, Uhl GR (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94:9938–9943

    CAS  PubMed  Google Scholar 

  41. Thiriot DS, Sievert MK, Ruoho AE (2002) Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond. Biochemistry 41:6346–6353

    Article  CAS  PubMed  Google Scholar 

  42. Uhl GR, Li S, Takahashi N, Itokawa K, Lin Z, Hazama M, Sora I (2000) The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J 14:2459–2476

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y-M, Gainetdinov RR, Fumagalli F, Xu F, Jones SR, Bock CB, Miller GW, Wightman RM, Caron MG (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19:1285–1296

    CAS  Google Scholar 

  44. Weihe E, Eiden LE (2000) Chemical neuroanatomy of the vesicular amine transporters. FASEB J 14:2435–2449

    Article  CAS  PubMed  Google Scholar 

  45. Weihe E, Schäfer MK-H, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 5:149–164

    CAS  PubMed  Google Scholar 

  46. Weihe E, Anlauf M, Schäfer M-KH, Hartschuh W, Eiden LE (1998) VMAT2 is the transporter mediating sequestration of monoamines in rat and human platelets, mast cells, and cutaneous dendritic cells (abstract). Soc Neurosci Abstr Nov 7–12: No. 301.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee E. Eiden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiden, L.E., Schäfer, M.KH., Weihe, E. et al. The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch - Eur J Physiol 447, 636–640 (2004). https://doi.org/10.1007/s00424-003-1100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1100-5

Keywords

Navigation