Skip to main content
Log in

Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen–Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))(ISI) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldi P, Atiya AF (1994) How delays affect neural dynamics and learning. IEEE Trans Neural Netw 5: 612–621

    Article  PubMed  CAS  Google Scholar 

  • Bar-Gad I, Ritov Y, Bergman H (2001) The neuronal refractory period causes a short-term peak in the autocorrelation function. J Neurosci Methods 104(2): 155–163

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew DJ (1982) Stochastic models for social processes, 3rd edn. Wiley, London

    Google Scholar 

  • Belair J (1993) Stability in a model of a delayed neural network. J Dyn Differ Equ 5: 607–623

    Article  Google Scholar 

  • Caianiello ER, De Luca A (1966) Decision equation for binary systems: applications to neuronal behavior. Kybernetik 3: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekhar S (1949) Brownian motion, dynamical friction and stellar dynamics. Rev Mod Phys 21(3): 383–388

    Article  Google Scholar 

  • Dayan P, Abbott LF (2003) Theoretical neuroscience: computational and mathematical modeling of neural systems. Published by the MIT Press with the Cognitive Neuroscience Institute, Cambridge, MA

    Google Scholar 

  • De la Rocha J, Doiron B, Shea-Brown E, Josic K, Reyes A (2007) Correlation between neural spike trains increases with firing rate. Nature 448(7155): 802–806

    Article  PubMed  CAS  Google Scholar 

  • De Vries B, Principe JC (1992) The gamma model—a new neural model for temporal processing. Neural Netw 5: 565–576

    Article  Google Scholar 

  • Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560(1): 89–110

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani F, Koch C (1998) Principles of spike train analysis. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks. MIT Press, Cambridge, MA

    Google Scholar 

  • Gardiner CW (1986) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, New York

    Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4(1, Part 1): 41–68

    Article  PubMed  CAS  Google Scholar 

  • Giraudo MT, Sacerdote L, Zucca C (2001) A monte carlo method for the simulation of first passage times of diffusion processes. Methodol Comput Appl Probab 3(2): 215–231

    Article  Google Scholar 

  • Gopalsamy K, He XZ (1994) Stability in asymmetric Hopfield nets with transmission delays. Physica D 76: 344–358

    Article  Google Scholar 

  • Gopalsamy K, Leung IKC (1997) Convergence under dynamical thresholds with delays. IEEE Trans Neural Netw 8(2): 341–348

    Article  PubMed  CAS  Google Scholar 

  • Haken H (1977) Synergetics: introduction and advanced topics. Springer, Berlin

    Google Scholar 

  • Holden AV (1976) Models of the stochastic activity of neurones. Lecture notes in biomathematics. Springer, Berlin

    Google Scholar 

  • Hutcheon B, Miura RM, Yarom Y, Puil E (1994) Low-threshold calcium current and resonance in thalamic neurons: a model of frequency preference. J Neurophysiol 71: 583–594

    PubMed  CAS  Google Scholar 

  • Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6-7): 883–894

    Article  PubMed  CAS  Google Scholar 

  • Jackson BS (2004) Including long-range dependence in integrate and fire models of the high interspike interval variability of the cortical neurons. Neural Comput 16: 2125–2155

    Article  PubMed  Google Scholar 

  • BS (1977) Brownian motion of a particle with frequency dependent friction. Indian National Science Academy 43: 461–464

    Google Scholar 

  • BS (2003) Entropy measures, maximum entropy principle and emerging applications. Springer, New York

    Google Scholar 

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, Berlin

    Google Scholar 

  • Koch C (1997) Computation and the single neuron. Nature 385 (6613): 207–210

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, Oxford

    Google Scholar 

  • Koch C, Bernander O, Douglas RJ (1995) Do neurons have a voltage or a current threshold for action potential initiation?.  J Comput Neurosci 2(1): 63–82

    Article  PubMed  CAS  Google Scholar 

  • Kostal L, Lansky P (2006) Similarity of interspike interval distributions and information gain in a stationary neuronal firing. Biol Cybern 94(2): 157–167

    Article  PubMed  Google Scholar 

  • Lansky P (1984) On approximation of Steins neuronal model. J Theor Biol 107(4): 631–647

    Article  PubMed  CAS  Google Scholar 

  • Lansky P, Lanska V (1994) First-passage-time problem for simulated stochastic diffusion processes. Comput Biol Med 24(2): 91–101

    Article  PubMed  CAS  Google Scholar 

  • Lansky P, Sanda P, He J (2006) The parameters of the stochastic leaky integrate-and-fire neuronal model. J Comput Neurosci 21(2): 211–223

    Article  PubMed  Google Scholar 

  • Liao X, Li S, Chen G (2004) Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain. Neural Netw 17(4): 545–561

    Article  PubMed  Google Scholar 

  • Llinas RR (1988) The intrinsic electro-physiological properties of mammalian neurons: insights into central nervous system function. Science 242: 1654–1664

    Article  PubMed  CAS  Google Scholar 

  • Llinas RR, Grace AA, Yarom Y (1991) In-vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory in the 10-to-50Hz frequency range. Proc Natl Acad Sci USA 88: 897–901

    Article  PubMed  CAS  Google Scholar 

  • MacDonald N (1978) Time lags in biological models. Lecture notes in biomathematics. Springer, Berlin

    Google Scholar 

  • Manwani A, Koch C (1999) Detecting and estimating signals in noisy cable structures, I. Neuronal noise sources. Neural Comput 11(8): 1797–1829

    Article  PubMed  CAS  Google Scholar 

  • Mar DJ, Chow CC, Gerstner W, Adams RW, Collins JJ (1999) Noise shaping in populations of coupled model neurons. Proc Natl Acad Sci USA 96(18): 10450–10455

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Bote R, Parga N (2006) Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Phys Rev Lett 96(2): 028101

    Article  PubMed  Google Scholar 

  • Pedroarena C, Llinas RR (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamo-cortical neurons. Proc Natl Acad Sci USA 94: 724–728

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi LM, Sacerdote L (1979) The Ornstein–Uhlenbeck process as a model for neuronal activity. Biol Cybern 35(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  • Ruan S (2004) Delay differential equatioms in single species dynamics. In: Ait Dads E, Arino O, Hbid M (eds) Delay differential equations with applications. NATO Advanced Study Institute

  • Smith H (2011) An introduction to delay differential equations with applications to the life sciences. Texts in applied mathematics, vol 57. Springer, Berlin

    Book  Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5(2): 173–194

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci USA 83(21): 8400–8404

    Article  PubMed  CAS  Google Scholar 

  • Svirskis G, Rinzel J (2000) Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J 79(2): 629–637

    Article  PubMed  CAS  Google Scholar 

  • Tank DW, Hopfield JJ (1987) Neural computation by concentrating information in time. Proc Natl Acad Sci USA 84(7): 1896–1900

    Article  PubMed  CAS  Google Scholar 

  • Trivedi KS (2002) Probability and statistics with reliability, queueing and computer science applications, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Tuckwell HC, Cannings C, Hoppensteadt FC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge, Cambridgeshire

    Book  Google Scholar 

  • Turcott RG, Barker PDR, Teich MC (1995) Long-duration correlation in the sequence of action potentials in an insect visual interneuron. J Stat Comput Simul 52: 253–271

    Article  Google Scholar 

  • Verechtchaguina T, Sokolov IM, Schimansky-Geier L (2006a) First passage time densities in non-Markovian models with subthreshold oscillations. Europhys Lett 73(5): 691–697

    Article  CAS  Google Scholar 

  • Verechtchaguina T, Sokolov IM, Schimansky-Geier L (2006b) First passage time densities in resonate-and-fire models. Phys Rev E 73(3): 031108

    Article  CAS  Google Scholar 

  • Ye H, Michel AN, Wing K (1994) Global stability and local stability of Hopfield neural networks with delays. Phys Rev E 50: 4206–4213

    Article  CAS  Google Scholar 

  • Zwanzig R, Bixon M (1970) Hydrodynamic theory of the velocity correlation function. Phys Rev A 2: 1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmeshu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmeshu, Gupta, V. & Kadambari, K.V. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel. Biol Cybern 104, 369–383 (2011). https://doi.org/10.1007/s00422-011-0441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0441-y

Keywords

Navigation