Skip to main content
Log in

Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Exercise increases mRNA for genes involved in mitochondrial biogenesis and oxidative enzyme capacity. However, little is known about how these genes respond to consecutive bouts of prolonged exercise. We examined the effects of 3 h of intensive cycling performed on three consecutive days on the mRNA associated with mitochondrial biogenesis in trained human subjects. Forty trained cyclists were tested for VO2max (54.7 ± 1.1 ml kg−1 min−1). The subjects cycled at 57% wattsmax for 3 h using their own bicycles on CompuTrainer™ Pro Model trainers (RacerMate, Seattle, WA) on three consecutive days. Muscle biopsies were obtained from the vastus lateralis pre- and post-exercise on days one and three. Muscle samples were analyzed for mRNA content of peroxisome proliferator receptor gamma coactivator-1 alpha (PGC-1α), sirtuin 1 (Sirt-1), cytochrome c, and citrate synthase. Data were analyzed using a 2 (time) × 2 (day) repeated measures ANOVA. Of the mRNA analyzed, the following increased from pre to post 3 h rides: cytochrome c (P = 0.006), citrate synthase (P = 0.03), PGC-1α (P < 0.001), and Sirt-1 (P = 0.005). The following mRNA showed significant effects from days one to three: cytochrome c (P < 0.001) and citrate synthase (P = 0.01). These data show that exhaustive cycling performed on three consecutive days resulted in both acute and chronic stimuli for mRNA associated with mitochondrial biogenesis in already trained subjects. This is the first study to illustrate an increase in sirtuin-1 mRNA with acute and chronic exercise. These data contribute to the understanding of mRNA expression during both acute and successive bouts of prolonged exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akerstrom TC, Birk JB, Klein DK, Erikstrup C, Plomgaard P, Pedersen BK, Wojtaszewski J (2006) Oral glucose ingestion attenuates exercise-induced activation of 5′-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun 342:949–955

    Article  PubMed  CAS  Google Scholar 

  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

    Article  PubMed  CAS  Google Scholar 

  • Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb J 16:1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev 6:298–305

    Article  CAS  Google Scholar 

  • Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6:759–767

    Article  PubMed  CAS  Google Scholar 

  • Borg G (1982) Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. Int J Sports Med 3:153–158

    Article  PubMed  CAS  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P (2005) Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab 289:E1023–E1029

    Article  PubMed  CAS  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Article  PubMed  CAS  Google Scholar 

  • Cluberton LJ, McGee SL, Murphy RM, Hargreaves M (2005) Effect of carbohydrate ingestion on exercise-induced alterations in metabolic gene expression. J Appl Physiol 99:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61:165–172

    PubMed  CAS  Google Scholar 

  • Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14:101–102

    PubMed  CAS  Google Scholar 

  • Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA (2000) Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol 89:2220–2226

    PubMed  CAS  Google Scholar 

  • Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11:139–150

    Article  PubMed  CAS  Google Scholar 

  • Freyssenet D (2007) Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102:529–540

    Article  PubMed  CAS  Google Scholar 

  • Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T (2000) cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 274:350–354

    Article  PubMed  CAS  Google Scholar 

  • Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK (2005) Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol 98:93–99

    Article  PubMed  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    PubMed  CAS  Google Scholar 

  • Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157

    PubMed  CAS  Google Scholar 

  • Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209:2265–2275

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SI, Kizaki T, Haga S, Ohno H, Takemasa T (2008) Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle. Biochem Biophys Res Commun 368:323–328

    Article  PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of World Class Cycling. J Sci Med Sport 3:414–433

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(∆∆C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mathai AS, Bonen A, Benton CR, Robinson DL, Graham TE (2008) Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle. J Appl Physiol 105:1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 148:3441–3448

    Article  PubMed  CAS  Google Scholar 

  • Mortensen OH, Plomgaard P, Fischer CP, Hansen AK, Pilegaard H, Pedersen BK (2007) PGC-1beta is downregulated by training in human skeletal muscle: no effect of training twice every second day vs. once daily on expression of the PGC-1 family. J Appl Physiol 103:1536–1542

    Article  PubMed  CAS  Google Scholar 

  • Moseley L, Achten J, Martin JC, Jeukendrup AE (2004) No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med 25:374–379

    Article  PubMed  CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 280:16456–16460

    Article  PubMed  Google Scholar 

  • Nieman DC, Davis JM, Henson DA, Gross SJ, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, McAnulty SR, McAnulty LS, Triplett NT (2005) Muscle cytokine mRNA changes after 2.5 h of cycling: influence of carbohydrate. Med Sci Sports Exerc 37:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T (2004) PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194

    Article  PubMed  CAS  Google Scholar 

  • Ojuka EO (2004) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63:275–278

    Article  PubMed  CAS  Google Scholar 

  • Passonneau JV, Lauderdale VR (1974) A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60:405–412

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M (2004) The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 63:263–267

    Article  PubMed  CAS  Google Scholar 

  • Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  PubMed  CAS  Google Scholar 

  • Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881

    Article  PubMed  CAS  Google Scholar 

  • Siri WE (1961) Body composition from fluid space and density. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA, Stapleton D, Kemp BE (2006) Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab 31:302–312

    Article  PubMed  CAS  Google Scholar 

  • Suwa M, Nakano H, Radak Z, Kumagai S (2008) Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism 57:986–998

    Article  PubMed  CAS  Google Scholar 

  • Timmons JA, Norrbom J, Scheele C, Thonberg H, Wahlestedt C, Tesch P (2006) Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics 87:165–172

    Article  PubMed  CAS  Google Scholar 

  • Winder WW, Taylor EB, Thomson DM (2006) Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med Sci Sports Exerc 38:1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Wright DC (2007) Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis. Appl Physiol Nutr Metab 32:840–845

    Article  PubMed  CAS  Google Scholar 

  • Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO (2007) Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. J Biol Chem 282:194–199

    Article  PubMed  CAS  Google Scholar 

  • Yeo WK, Paton CD, Garnham AP, Burke LM, Carey A, Hawley JA (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol (90882.92008)

Download references

Acknowledgments

The authors wish to thank the subjects for their investment in time and energy. We would like to thank the following ASU graduate students involved in the data collection for this investigation, including: Jessica Unick, John Troy Owens, Matt Hudson, Peter Hosick, Steven Pearce, Timothy McInnis, Heather LaSasso, Michael Rigby and Sean Schumm. This study was partially supported by a grant from the Defense Advanced Research Projects Agency (DARPA) and the Army Research Office (ARO), award number W911NF-06-0014.

Conflict of interest statement

The authors did not have any conflict of interest in access to these data or associations with companies involved with products used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Dumke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumke, C.L., Mark Davis, J., Angela Murphy, E. et al. Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis. Eur J Appl Physiol 107, 419–427 (2009). https://doi.org/10.1007/s00421-009-1143-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1143-1

Keywords

Navigation