Skip to main content

Advertisement

Log in

The effect of test variability on the structure–function relationship in early glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether the weakness of the structure–function relationship could be produced by test variability alone, without implying underlying dissociation between the true rates of structural and functional change.

Methods

Perimetric mean deviation (MD), and rim area (RA) and cup volume (CV) from confocal scanning laser ophthalmoscopy, over six visits, were taken from 166 eyes of 92 participants with high-risk ocular hypertension or suspected/early glaucoma in the Portland Progression Project. Models were created of each measure’s variability. A further model predicted the rate of functional change from the rate of structural change. These were used to generate realistic simulated sequences of both functional and structural data with different standard deviations σ between the underlying rates of change. ‘Observed’ structure–function relationships were calculated. An empirical p-value was derived, equaling the proportion of simulated series for which the ‘observed’ structure–function dissociation was greater than that seen in patient data.

Results

The correlation between the rates of structural (RA) and functional (MD) change was 0.171, consistent with σ < 0.02 dB/yr. Using CV, the correlation was −0.091, consistent with σ < 0.01 dB/yr. By comparison, the models predicted that the standard deviation of the rate of functional change for a healthy eye due to test variability would be 0.18 dB/yr.

Conclusion

Test variability is sufficiently large that realistic patient data can be simulated without requiring a large variability between the underlying rates of structural and functional change. This absence of implied dissociation is a necessary condition for it to be valid to combine structural and functional measures to improve estimates of functional change and/or to reduce perimetric variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson D, Patella V (1999) Automated static perimetry. Mosby, St. Louis

    Google Scholar 

  2. Allingham RR, Damji KF, Freedman S, Moroi SE, Shafranov G (2005) Assessment of visual fieldsshields' textbook of glaucoma. Lippincott, Williams & Wilkins, Philadelphia, pp 116–142

    Google Scholar 

  3. Artes P, Iwase A, Ohno Y, Kitazawa Y, Chauhan B (2002) Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 43:2654–2659

    PubMed  Google Scholar 

  4. Kass MA, Gordon MO, Gao F, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JK, Miller JP, Parrish RK, Wilson MR, for the Ocular Hypertension Treatment Study G (2010) Delaying treatment of ocular hypertension: the Ocular Hypertension Treatment Study. Arch Ophthalmol 128:276–287. doi:10.1001/archophthalmol.2010.20

    Article  PubMed  Google Scholar 

  5. Chen P, Cady R, Mudumbai R, Ngan R (2010) Continued visual field progression in eyes with prior visual field progression in patients with open-angle glaucoma. J Glaucoma 19:598–603

    Article  PubMed  Google Scholar 

  6. Gardiner S, Demirel S, Johnson C (2011) Perimetric indices as predictors of future glaucomatous functional change. Optom Vis Sci 88:56–62

    Article  PubMed  Google Scholar 

  7. Henson D, Chaudry S, Artes P, Faragher E, Ansons A (2000) Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci 41:417–421

    PubMed  CAS  Google Scholar 

  8. Hood D, Anderson S, Wall M, Kardon R (2007) Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 48:3662–3668. doi:10.1167/iovs.06-1401

    Article  PubMed  Google Scholar 

  9. Garway-Heath D, Caprioli J, Fitzke F, Hitchings R (2000) Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci 41:1774–1782

    PubMed  CAS  Google Scholar 

  10. Gardiner S, Demirel S (2008) Assessment of patient opinions of different clinical tests used in the management of glaucoma. Ophthalmology 115:2127–2131

    Article  PubMed  Google Scholar 

  11. Gardiner SK, Johnson CA, Cioffi GA (2005) Evaluation of the structure-function relationship in glaucoma. Invest Ophthalmol Vis Sci 46:3712–3717

    Article  PubMed  Google Scholar 

  12. Johnson C, Cioffi G, Liebmann J, Sample P, Zangwill L, Weinreb R (2000) The relationship between structural and functional alterations in glaucoma: a review. Semin Ophthalmol 15:221–233

    Article  PubMed  CAS  Google Scholar 

  13. Garway-Heath D, Holder G, Fitzke F, Hitchings R (2002) Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 43:2213–2220

    PubMed  Google Scholar 

  14. Xin D, Greenstein VC, Ritch R, Liebmann JM, De Moraes CGV, Hood DC (2011) A comparison of functional and structural measures for identifying progression of glaucoma. Invest Ophthalmol Vis Sci 52(1):519–526. doi:10.1167/iovs.10-5174

    Article  Google Scholar 

  15. Artes P, Chauhan B (2005) Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res 24:333–354

    Article  PubMed  Google Scholar 

  16. Jampel HD, Vitale S, Ding Y, Quigley H, Friedman D, Congdon N, Zeimer R (2006) Test-retest variability in structural and functional parameters of glaucoma damage in the glaucoma imaging longitudinal study. J Glaucoma 15:152–157

    Article  PubMed  Google Scholar 

  17. Shah NN, Bowd C, Medeiros FA, Weinreb RN, Sample PA, Hoffmann EM, Zangwill LM (2006) Combining structural and functional testing for detection of glaucoma. Ophthalmology 113:1593–1602

    Article  PubMed  Google Scholar 

  18. Weinreb R, Kaufman P (2009) The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER glaucoma clinical trial design and endpoints symposium. Invest Ophthalmol Vis Sci 50:1497–1505. doi:10.1167/iovs.08-2843

    Article  PubMed  Google Scholar 

  19. Crabb DP, Owen VMF, Garway-Heath DF (2007) Poor agreement between current tests of structural and functional progression in glaucoma can be explained by measurement noise (E-abstract). Invest Ophthalmol Vis Sci 48:1615

    Article  Google Scholar 

  20. Vesti E, Spry P, Chauhan B, Johnson C (2002) Sensitivity differences between real-patient and computer-simulated visual fields. J Glaucoma 11:35–45

    Article  PubMed  Google Scholar 

  21. Gordon M, Beiser J, Brandt J, Heuer D, Higginbotham E, Johnson C, Keltner J, Miller J, Parrish R II, Wilson M, Kass M, Ocular Hypertension Treatment Study Group (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720. doi:10.1001/archopht.120.6.714

    Article  PubMed  Google Scholar 

  22. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E, Group EMGT (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56. doi:10.1001/archopht.121.1.48

    Article  PubMed  Google Scholar 

  23. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A (2000) Vascular risk factors for primary open angle glaucoma: The Egna-Neumarkt Study. Ophthalmology 107:1287–1293

    Article  PubMed  CAS  Google Scholar 

  24. Drance S, Anderson DR, Schulzer M (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708

    Article  PubMed  CAS  Google Scholar 

  25. Chopra V, Varma R, Francis BA, Wu J, Torres M, Azen SP (2008) Type 2 diabetes mellitus and the risk of open-angle glaucoma: The Los Angeles Latino Eye Study. Ophthalmology 115:227–232.e221

    Article  PubMed  Google Scholar 

  26. Broadway DC, Drance SM (1998) Glaucoma and vasospasm. Br J Ophthalmol 82:862–870. doi:10.1136/bjo.82.8.862

    Article  PubMed  CAS  Google Scholar 

  27. Leske MC, Connell AMS, Wu S-Y, Hyman LG, Schachat AP, Barbados Eye Study G (1995) Risk factors for open-angle glaucoma: The Barbados Eye Study. Arch Ophthalmol 113:918–924. doi:10.1001/archopht.1995.01100070092031

    Article  PubMed  CAS  Google Scholar 

  28. Spry P, Johnson C, Mansberger S, Cioffi G (2005) Psychophysical investigation of ganglion cell loss in early glaucoma. J Glaucoma 14:11–18

    Article  PubMed  Google Scholar 

  29. Bengtsson B, Olsson J, Heijl A, Rootzen H (1997) A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol 75:368–375

    Article  CAS  Google Scholar 

  30. Fingeret M, Flanagan JG, Liebmann JM (2005) The essential HRT primer. Jocoto Advertising, Inc, San Ramon

    Google Scholar 

  31. Hood D, Kardon R (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26:688–710

    Article  PubMed  Google Scholar 

  32. Hot A, Dul M, Swanson W (2008) Development and evaluation of a contrast sensitivity perimetry test for patients with glaucoma. Invest Ophthalmol Vis Sci 49:3049–3057. doi:10.1167/iovs.07-1205

    Article  PubMed  Google Scholar 

  33. Deming W (1943) Statistical adjustment of data. Wiley, New York

    Google Scholar 

  34. Keltner JL, Johnson CA, Anderson DR, Levine RA, Fan J, Cello KE, Quigley HA, Budenz DL, Parrish RK, Kass MA, Gordon MO (2006) The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology 113:1603–1612

    Article  PubMed  Google Scholar 

  35. DeLeon Ortega JE, Sakata LM, Kakati B, McGwin G, Monheit BE, Arthur SN, Girkin CA (2007) Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci 48:1156–1163. doi:10.1167/iovs.06-0921

    Article  PubMed  Google Scholar 

  36. Zhu H, Crabb DP, Schlottmann PG, Lemij H, Reus NJ, Healey PR, Mitchell P, Ho T, Garway-Heath DF (2010) Predicting visual function from the measurements of retinal nerve fiber layer structure. Invest Ophthalmol Vis Sci 51(11):5657–5666. doi: 10.1167/iovs.10-5239

    Article  Google Scholar 

  37. Gardiner S, Swanson W, Demirel S, McKendrick A, Turpin A, Johnson C (2008) A two-stage neural spiking model of visual contrast detection in perimetry. Vis Res 48:1859–1869

    Article  PubMed  CAS  Google Scholar 

  38. Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH (2009) A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci 50:4254–4266. doi:10.1167/iovs.08-2697

    Article  PubMed  Google Scholar 

  39. Harwerth R, Vilupuru A, Rangaswamy N, Smith E III (2007) The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 48:763–773

    Article  PubMed  Google Scholar 

  40. Quigley H, Dunkelberger G, Green W (1987) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    Google Scholar 

  41. Harwerth R, Carter-Dawson L, Shen F, Smith E, Crawford M (1999) Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40:2242–2250

    PubMed  CAS  Google Scholar 

  42. Harwerth R, Crawford M, Frishman L, Viswanathan S, Smith E, Carter-Dawson L (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21:91–125

    Article  PubMed  Google Scholar 

  43. Harwerth R, Quigley H (2006) Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol 124:853–859. doi:10.1001/archopht.124.6.853

    Article  PubMed  Google Scholar 

  44. Harwerth RS, Wheat JL, Fredette MJ, Anderson DR (2010) Linking structure and function in glaucoma. Prog Ret Eye Res 29:249–271

    Article  CAS  Google Scholar 

  45. Swanson W, Felius J, Pan F (2004) Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci 45:466–472

    Article  PubMed  Google Scholar 

  46. Strouthidis N, Scott A, Peter N, Garway-Heath D (2006) Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 47:2904–2910. doi:10.1167/iovs.05-1584

    Article  PubMed  Google Scholar 

  47. Hudson CJW, Kim LS, Hancock SA, Cunliffe IA, Wild JM (2007) Some dissociating factors in the analysis of structural and functional progressive damage in open-angle glaucoma. Br J Ophthalmol 91:624–628. doi:10.1136/bjo.2005.087213

    Article  PubMed  CAS  Google Scholar 

  48. Heijl A, Leske M, Bengtsson B, Hyman L, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 120:1268–1279

    PubMed  Google Scholar 

  49. Gardiner S, Crabb D, Fitzke F, Hitchings R (2004) Reducing noise in suspected glaucomatous visual fields by using a new spatial filter. Vision Res 44:839–848

    Article  PubMed  Google Scholar 

  50. Strouthidis N, Scott A, Viswanathan A, Crabb D, Garway-Heath D (2007) Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. Invest Ophthalmol Vis Sci 48:251–257. doi:10.1167/iovs.06-0576

    Article  PubMed  Google Scholar 

  51. Morales J, Weitzman M, Gonzalez de la Rosa M (2000) Comparison between tendency-oriented perimetry (TOP) and octopus threshold perimetry. Ophthalmology 107:134–142

    Article  PubMed  CAS  Google Scholar 

  52. Garway-Heath D, Poinoosawmy D, Fitzke F, Hitchings R (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815

    Article  PubMed  CAS  Google Scholar 

  53. Strouthidis N, Vinciotti V, Tucker A, Gardiner S, Crabb D, Garway-Heath D (2006) Structure and function in glaucoma; the relationship between a functional visual field map and an anatomical retinal map. Invest Ophthalmol Vis Sci 47:5356–5362

    Article  PubMed  Google Scholar 

  54. Bowd C, Zangwill L, Medeiros F, Tavares I, Hoffmann E, Bourne R, Sample P, Weinreb R (2006) Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 47:2889–2895. doi:10.1167/iovs.05-1489

    Article  PubMed  Google Scholar 

  55. Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) 3-D Histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci 48:4597–4607. doi:10.1167/iovs.07-0349

    Article  PubMed  Google Scholar 

  56. Weber A, Harman C (2005) Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 46:3197–3207

    Article  PubMed  Google Scholar 

  57. Fortune B, Demirel S, Zhang X, Hood D, Patterson E, Jamil A, Mansberger S, Cioffi G, Johnson C (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180. doi:10.1167/iovs.06-0561

    Article  PubMed  Google Scholar 

  58. Harwerth R, Wheat J, Rangaswamy N (2008) Age-related losses of retinal ganglion cells and axons. Invest Ophthalmol Vis Sci 49:4437–4443. doi:10.1167/iovs.08-1753

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Gardiner.

Additional information

This project was funded in part by NIH grants NEI R01-EY-03424 (to author CAJ) and NEI R01- EY-019674 (to author SD). No authors have any financial/conflicting interests to disclose. The authors have full control of all primary data, and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review the data if requested.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardiner, S.K., Johnson, C.A. & Demirel, S. The effect of test variability on the structure–function relationship in early glaucoma. Graefes Arch Clin Exp Ophthalmol 250, 1851–1861 (2012). https://doi.org/10.1007/s00417-012-2005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2005-9

Keywords

Navigation