Skip to main content

Advertisement

Log in

Glycoxidized particles mimic lipofuscin accumulation in aging eyes: a new age-related macular degeneration model in rabbits

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The biogenesis of drusen, a hallmark of age-related macular degeneration (AMD), is still unclear. Lipofuscin, which extensively accumulates with age in RPE cells, is hardly soluble, derived in part from oxidation byproducts of the photoreceptor outer segments. The purpose of the current study is to develop a new AMD model in rabbits using glycoxidized particles as imitation lipofuscin, and determine whether accumulation of lipofuscin as insoluble material may play a role in drusen biogenesis and other pathogenesis of AMD.

Methods

To mimic the accumulation of insoluble lipofuscin, glycoxidized microspheres (glycox-MS) were made through a glycoxidation process with albumin and glycolaldehyde, α-hydroxy aldehyde. As a control, microspheres made with glutaraldehyde (cMS) and soluble glycoxidized (glycox-) albumin were prepared. Each material was implanted into the subretinal space in rabbits. The implanted area was assessed by funduscopy, fluorescein angiography, histology, and transmission electron microscopy (TEM).

Results

Compared with control microspheres, glycox-MS stagnated for a prolonged period in the cytoplasm of RPE cells. Eyes implanted with glycox-MS produced drusen-like deposits at a significantly higher frequency, when compared with the controls. Glycox-MS were observed at the margin of or beneath the drusen-like deposits in all cases. In some eyes with glycox-MS, late-onset sub-RPE choroidal neovascularization was observed, while control groups did not have these findings.

Conclusions

These results suggest that the accumulation of indigestible granules such as lipofuscin in RPE or subsequent depositions toward Bruch’s membrane may play a role in drusen biogenesis as a trigger of inflammation or via other mechanisms. This model of AMD may be useful to elucidate drusen biogenesis and pathogenesis of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klein R, Klein BE, Kinton KL (1992) Prevalence of age-related maculopathy. The Beaver dam eye study. Ophthalmology 99:933–943

    PubMed  CAS  Google Scholar 

  2. Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT (1998) Age-specific prevalence and causes of blindness and visual impairment in an older population. Arch Ophthalmol 116:653–658

    PubMed  CAS  Google Scholar 

  3. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, Klaver CC, Klein BE, Klein R et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM Epidemiological Study Group. Surv Ophthalmol 39:367–374

    Article  PubMed  CAS  Google Scholar 

  4. Kliffen M, van der Schaft TL, Mooy CM, de Jong PT (1997) Morphologic changes in age-related maculopathy. Microsc Res Tech 36:106–122

    Article  PubMed  CAS  Google Scholar 

  5. Green WR, McDonnel PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92:615–627

    PubMed  CAS  Google Scholar 

  6. Ferris F III, Fine S, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102:1640–1642

    PubMed  Google Scholar 

  7. Coffey AJH, Brownstein S (1986) The prevalence of macular drusen in postmortem eyes. Am J Ophthalmol 102:164–171

    Article  PubMed  CAS  Google Scholar 

  8. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102:7227–7232

    Article  PubMed  CAS  Google Scholar 

  9. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  10. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  PubMed  CAS  Google Scholar 

  11. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  PubMed  CAS  Google Scholar 

  12. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT (2006) AMD Genetics Clinical Study Group; Hageman GS, Dean M, Allikmets R. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

    Article  PubMed  CAS  Google Scholar 

  13. Donoso LA, Kim D, Frost A, Callahan A, Hageman G (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51:137–152

    Article  PubMed  Google Scholar 

  14. Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radical Biol Med 21:871–888

    Article  CAS  Google Scholar 

  15. Okubo A, Rosa RH Jr, Bunce CV, Alexander RA, Fan JT, Bird AC, Luthert PJ (1999) The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Invest Ophthalmol Vis Sci 40:443–449

    PubMed  CAS  Google Scholar 

  16. Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44:3663–3668

    Article  PubMed  Google Scholar 

  17. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36:1290–1297

    PubMed  CAS  Google Scholar 

  18. Evans JR (2001) Risk factors for age-related macular degeneration. Prog Retin Eye Res 20:227–253

    Article  PubMed  CAS  Google Scholar 

  19. Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  PubMed  CAS  Google Scholar 

  20. Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, Shimizu T, Mizushima Y, Shirasawa T, Tsubota K (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: A model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282–11287

    Article  PubMed  CAS  Google Scholar 

  21. Monneir VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211:491–493

    Article  Google Scholar 

  22. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91:4766–4770

    Article  PubMed  CAS  Google Scholar 

  23. Vlassara H (1996) Advanced glycation end-products and atherosclerosis. Ann Med 28:419–426

    PubMed  CAS  Google Scholar 

  24. Matsumoto K, Ikeda K, Horiuchi S, Zhao H, Abraham EC (1997) Immunochemical evidence for increased formation of advanced glycation end products and inhibition by aminoguanidine in diabetic rat lenses. Biochem Biophys Res Commun 241:352–354

    Article  PubMed  CAS  Google Scholar 

  25. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37:586–600

    Article  PubMed  CAS  Google Scholar 

  26. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632

    PubMed  CAS  Google Scholar 

  27. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40:775–779

    PubMed  CAS  Google Scholar 

  28. Hammes HP, Hoerauf H, Alt A, Schleicher E, Clausen JT, Bretzel RG, Laqua H (1999) Ne(Carboxymethyl)Lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci 40:1855–1859

    PubMed  CAS  Google Scholar 

  29. Honda S, Farboud B, Hjelmeland LM, Handa JT (2001) Induction of an aging mRNA retinal pigment epithelial cell phenotype by matrix-containing advanced glycation end products in vitro. Invest Ophthalmol Vis Sci 42:2419–2425

    PubMed  CAS  Google Scholar 

  30. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    Article  PubMed  CAS  Google Scholar 

  31. Acharya AS, Manning JM (1983) Reaction of glycolaldehyde with proteins: Latent crosslinking potential of a-hydroxyaldehydes. Proc Natl Acad Sci USA 80:3590–3594

    Article  PubMed  CAS  Google Scholar 

  32. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A (1986) Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232:1629–1632

    Article  PubMed  CAS  Google Scholar 

  33. Akasaka Y, Ueda H, Takayama K, Machida Y, Nagai T (1988) Preparation and evaluation of bovine serum albumin nanospheres coated with monoclonal antibodies. Drug Des Deliv 3:85–97

    PubMed  CAS  Google Scholar 

  34. Ryan SJ (1982) Subretinal neovascularization: natural history of an experimental model. Arch Ophthalmol 100:1804–1809

    PubMed  CAS  Google Scholar 

  35. Dobi ET, Puliafito CA, Destro M (1989) A new model of choroidal neovascularization in the rat. Arch Ophthalmol 107:264–269

    PubMed  CAS  Google Scholar 

  36. Kimura H, Sakamoto T, Hinton DR, Spee C, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1995) A new model of subretinal neovascularization in the rabbit. Invest Ophthalmol Vis Sci 36:2110–2119

    PubMed  CAS  Google Scholar 

  37. Cui JZ, Kimura H, Spee C, Thumann G, Hinton DR, Ryan SJ (2000) Natural history of choroidal neovascularization induced by vascular endothelial growth factor in the primate. Graefe’s Arch Clin Exp Ophthalmol 238:326–333

    Article  CAS  Google Scholar 

  38. Pollack A, Korte GE, Weitzner AL, Henkind P (1986) Ultrastructure of Bruch’s membrane after krypton laser photocoagulation. Arch Ophthalmol 104:1372–1376

    PubMed  CAS  Google Scholar 

  39. Pollack A, Korte GE, Heriot WJ, Henkind P (1986) Ultrastructure of Bruch’s membrane after krypton laser photocoagulation. II. Repair of Bruch’s membrane and the role of macrophages. Arch Ophthalmol 104:1377–1382

    PubMed  CAS  Google Scholar 

  40. Baffi J, Byrnes G, Chan CC, Csaky KG (2000) Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 41:3582–3589

    PubMed  CAS  Google Scholar 

  41. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144

    PubMed  CAS  Google Scholar 

  42. Tabatabay CA, D’Amico DJ, Hanninen LA, Kenyon KR (1987) Experimental drusen formation induced by intravitreal aminoglycoside injection. Arch Ophthalmol 105:826–830

    PubMed  CAS  Google Scholar 

  43. Dithmar S, Curcio CA, Le NA, Brown S, Grossniklaus HE (2000) Ultrastructural change in Bruch’s membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 41:2035–2042

    PubMed  CAS  Google Scholar 

  44. Kliffen M, Lutgens E, Daemen MJ, de Muinck ED, Mooy CM, de Jong PT (2000) The APO(*)E3-Leiden mouse as an animal model for basal laminar deposit. Br J Ophthalmol 84:1415–1419

    Article  PubMed  CAS  Google Scholar 

  45. Rakoczy PE, Zhang D, Robertson T, Barnett NL, Papadimitriou J, Constable IJ, Lai CM (2002) Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 161:1515–1524

    PubMed  CAS  Google Scholar 

  46. Malek G, Johnson LV, Mace BE, Saloupis P, Schmechel DE, Rickman DW, Toth CA, Sullivan PM, Rickman CB (2005) Apolipoprotein E allele-dependent pathogenesis: A model for age-related retinal degeneration. Proc Natl Acad Sci USA 102:11900–11905

    Article  PubMed  CAS  Google Scholar 

  47. Dithmar S, Sharara NA, Curcio CA, Le NA, Zhang Y, Brown S, Grossniklaus HE (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 119:1643–1649

    PubMed  CAS  Google Scholar 

  48. Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN, Poulaki V, Ma JJ, Redmond TM, Liu S, Adamis AP, D’Amato RJ (2001) Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 158:1161–1172

    PubMed  CAS  Google Scholar 

  49. Zhu ZR, Goodnight R, Nishimura T, Sorgente N, Ogden TE, Ryan SJ (1988) Experimental resembling the pathology of drusen in Bruch’s membrane in the rabbit. Curr Eye Res 7:581–592

    PubMed  CAS  Google Scholar 

  50. Curcio C, Saunders P, Younger P, Malek G (2000) Peripapillary chorioretinal atrophy: Bruch’s membrane changes and photoreceptor loss. Ophthalmology 107:334–343

    Article  PubMed  CAS  Google Scholar 

  51. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  PubMed  CAS  Google Scholar 

  52. Schleicher ED, Wagner E, Nerlich AG (1997) Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 99:457–468

    PubMed  CAS  Google Scholar 

  53. Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    PubMed  CAS  Google Scholar 

  54. Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Munch G (2000) Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267:4171–4178

    Article  PubMed  CAS  Google Scholar 

  55. Niwa H, Takeda A, Wakai M, Miyata T, Yasuda Y, Mitsuma T, Kurokawa K, Sobue G (1998) Accelerated formation of N epsilon-(carboxymethyl) lysine, an advanced glycation end product, by glyoxal and 3-deoxyglucosone in cultured rat sensory neurons. Biochem Biophys Res Commun 248:93–97

    Article  PubMed  CAS  Google Scholar 

  56. Seidl R, Schuller E, Cairns N, Lubec G (1997) Evidence against increased glycoxidation in patients with Alzheimer’s disease. Neurosci Lett 232:49–52

    Article  PubMed  CAS  Google Scholar 

  57. Castellani R, Smith MA, Richey PL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737:195–200

    Article  PubMed  CAS  Google Scholar 

  58. Sakata N, Uesugi N, Takebayashi S, Nagai R, Jono T, Horiuchi S, Takeya M, Itabe H, Takano T, Myint T, Taniguchi N (2001) Glycoxidation and lipid peroxidation of low-density lipoprotein can synergistically enhance atherogenesis. Cardiovasc Res 49:466–475

    Article  PubMed  CAS  Google Scholar 

  59. Baynes JW, Thorpe SR (2000) Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 28:1708–1716

    Article  PubMed  CAS  Google Scholar 

  60. Imanaga Y, Sakata N, Takebayashi S, Matsunaga A, Sasaki J, Arakara K, Nagai R, Horiuchi S, Itabe H, Takano T (2000) In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atherosclerosis 150:343–355

    Article  PubMed  CAS  Google Scholar 

  61. Thornalley PJ (2002) Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 50:37–57

    Article  PubMed  CAS  Google Scholar 

  62. Haralampus-Grynaviski NM, Lamb LE, Clancy CM, Skumatz C, Burke JM, Sarna T, Simon JD (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci USA 100:3179–3184

    Article  PubMed  CAS  Google Scholar 

  63. Hoppe G, O’Neil J, Hoff HF (1994) Inactivation of lysosomal proteases by oxidized low density lipoprotein is partially responsible for its poor degradation by mouse peritoneal macrophages. J Clin Invest 94:1506–1512

    Article  PubMed  CAS  Google Scholar 

  64. O’Neil J, Hoppe G, Sayre LM, Hoff HF (1997) Inactivation of cathepsin B by oxidized LDL involves complex formation induced by binding of putative reactive sites exposed at low pH to thiols on the enzyme. Free Radic Biol Med 23:215–225

    Article  PubMed  CAS  Google Scholar 

  65. Hoppe G, Ravandi A, Herrera D, Kuksis A, Hoff HF (1997) Oxidation products of cholesteryl linoleate are resistant to hydrolysis in macrophages, form complexes with proteins and are present in human atherosclerotic lesions. J Lipid Res 38:1347–1360

    PubMed  CAS  Google Scholar 

  66. Yancey PG, Jerome WG (2001) Lysosomal cholesterol derived from mildly oxidized low density lipoprotein is resistant to efflux. J Lipid Res 42:317–327

    PubMed  CAS  Google Scholar 

  67. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274

    PubMed  CAS  Google Scholar 

  68. Haimovici R, Gantz DL, Rumelt S, Freddo TF, Small DM (2001) The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Invest Ophthalmol Vis Sci 42:1592–1599

    PubMed  CAS  Google Scholar 

  69. Hageman GS, Mullins RF, Russell SR, Johnson LV, Anderson DH (1999) Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB J 13:477–484

    PubMed  CAS  Google Scholar 

  70. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    PubMed  CAS  Google Scholar 

  71. Mullins RF, Hageman GS (1999) Human ocular drusen possess novel core domains with a distinct carbohydrate composition. J Histochem Cytochem 47:1533–1539

    PubMed  CAS  Google Scholar 

  72. Johnson LV, Ozaki S, Staples MK, Erickson PA, Anderson DH (2000) A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res 70:441–449

    Article  PubMed  CAS  Google Scholar 

  73. Anderson DH, Ozaki S, Nealon M, Neitz J, Mullins RF, Hageman GS, Johnson LV (2001) Local cellular sources of apolipoprotein E in the human retina and retinal pigment epithelium: Implications for the process of drusen formation. Am J Ophthalmol 131:767–781

    Article  PubMed  CAS  Google Scholar 

  74. Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer’s A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830–11835

    Article  PubMed  CAS  Google Scholar 

  75. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431

    Article  PubMed  CAS  Google Scholar 

  76. Klaver CC, Ott A, Hofman A, Assink JJ, Breteler MM, de Jong PT (1999) Is age-related maculopathy associated with Alzheimer’s Disease? The Rotterdam Study. Am J Epidemiol 150:963–968

    PubMed  CAS  Google Scholar 

  77. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. AREDS Report No. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

Download references

Acknowledgements

Tsutomu Yasukawa, MD, conducted the present study as an Alexander von Humboldt Foundation scholar. We thank Grit Müller for help with animal surgery and Ute Weinbrecht, Karin Bartholomäus, and Silke Jantzen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Yasukawa.

Additional information

Supported in part by German Research Community (DFG) grant WI 880/9-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasukawa, T., Wiedemann, P., Hoffmann, S. et al. Glycoxidized particles mimic lipofuscin accumulation in aging eyes: a new age-related macular degeneration model in rabbits. Graefes Arch Clin Exp Ophthalmol 245, 1475–1485 (2007). https://doi.org/10.1007/s00417-007-0571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0571-z

Keywords

Navigation