Skip to main content

Advertisement

Log in

Subthalamic nucleus stimulation in Parkinson’s disease

Anatomical and electrophysiological localization of active contacts

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objectives

1 - To assess the anatomical localization of the active contacts of deep brain stimulation targeted to the subthalamic nucleus (STN) in Parkinson’s disease patients. 2 - To analyze the stereotactic spatial distribution of the active contacts in relation to the dorsal and the ventral electrophysiologically-defined borders of the STN and the stereotactic theoretical target.

Methods

Twenty-eight patients underwent bilateral high-frequency stimulation of the STN (HFS-STN). An indirect anatomical method based on ventriculography coupled to electrophysiological techniques were used to localize the STN. Clinical improvement was evaluated by Unified Parkinson’s Disease Rating Scale motor score (UPDRS III). The normalized stereotactic coordinates of the active contact centres, dorsal and ventral electrophysiologically-defined borders of the STN were obtained from intraoperative X-rays images. These coordinates were represented in a three-dimensional stereotactic space and in the digitalized atlas of the human basal ganglia.

Results

HFS-STN resulted in significant improvement of motor function (62.8%) in off-medication state and levodopa-equivalent dose reduction of 68.7% (p < 0.05). Most of the active contacts (78.6%) were situated close to (± 1.6 mm) the dorsal border of the STN (STN-DB), while 16% were dorsal and 5.4% were ventral to it. Similar distribution was observed in the atlas. The euclidean distance between the STN-DB distribution center and the active contacts distribution center was 0.31 mm, while the distance between the active contacts distribution center and the stereotactic theoretical target was 2.15 mm. Most of the space defined by the active contacts distribution (53%) was inside that defined by the STN-DB distribution.

Conclusion

In our series, most of the active electrodes were situated near the STN-DB. This suggests that HFS-STN could influence not only STN but also the dorsal adjacent structures (zona incerta and/or Fields of Forel).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abosch A, Hutchison WD, Saint-Cyr JA, Dostrovsky JO, Lozano AM (2002) Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J Neurosurg 97:1167–1172

    PubMed  Google Scholar 

  2. Ashby P, Kim YJ, Kumar R, Lang AE, Lozano AM (1999) Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain 122:1919–1931

    Article  PubMed  Google Scholar 

  3. Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–292

    Article  PubMed  CAS  Google Scholar 

  4. Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62:76–84

    PubMed  CAS  Google Scholar 

  5. Benabid AL, Koudsie A, Benazzouz A, Le Bas JF, Pollak P (2002) Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Mov Disord 17:S123–S129

    Article  PubMed  Google Scholar 

  6. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16

    PubMed  CAS  Google Scholar 

  7. Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E, Gross C (2004) High-frequency stimulation of both zona incerta and subthalamic nucleus induces a normalization of basal ganglia metabolic activity in experimental parkinsonism. Faseb J 18:528–530

    PubMed  CAS  Google Scholar 

  8. Bergman H, Wichmann T, De Long MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  PubMed  CAS  Google Scholar 

  9. Bevan MD, Wilson CJ (1999) Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. J Neurosci 19:7617–7628

    PubMed  CAS  Google Scholar 

  10. Bourgeois G, Magnin M, Morel A, Sartoretti S, Huisman T, Tuncdogan E, Meier J, Jeanmonod D (1999) Accuracy of MRI-guided stereotactic thalamic functional neurosurgery. Neuroradiology 41:636–645

    Article  PubMed  CAS  Google Scholar 

  11. De Long MR, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    Google Scholar 

  12. De Long MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  Google Scholar 

  13. Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-Brain Stimulation of the Subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963

    Article  Google Scholar 

  14. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84:570–574

    PubMed  CAS  Google Scholar 

  15. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 3:S63–S68

    Article  Google Scholar 

  16. Fahn S, Elton RL, UPDRS Development Committee (1987) The unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, et al. (eds) Recent developments in Parkinson’s disease. Vol 2. Florham Park, NJ: MacMillan Healthcare Information, 153–163

    Google Scholar 

  17. Fahn S, (1997) Levodopa-induced neurotoxicity: does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 8:376–393

    CAS  Google Scholar 

  18. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in subthalamic nucleus. Exp Brain Res 156:274–281

    Article  PubMed  Google Scholar 

  19. Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual Effect of high-frequency stimulation on subthalamic neuron activity. J Neurosc 24:8743–8751

    Google Scholar 

  20. Georgopoulos AP, De Long MR, Crutcher MD (1983) Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosc 3:1586–1598

    CAS  Google Scholar 

  21. Guiot G, Arfel G, Derôme P (1968) La chirurgie stéreotaxique des tremblements de repos et d’attitude. Gaz Med France 75:4029–4056

    Google Scholar 

  22. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2003) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20

    Article  PubMed  Google Scholar 

  23. Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Müller D, Volkmann J, Deuschl G, Mehdorn HM (2003) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74:1036–1046

    Article  PubMed  CAS  Google Scholar 

  24. Hariz MI, Bergenheim AT, Fodstad H (1993) Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures. Acta Neurochir (Wien) 1993;123(3–4):147–52

    Google Scholar 

  25. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus change the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    PubMed  CAS  Google Scholar 

  26. Heise CE, Mitrofanis J (2004) Evidence for a glutamatergic projection from the zona incerta to the basal ganglia of rats. J Comp Neurol 468:482–495

    Article  PubMed  CAS  Google Scholar 

  27. Herzog J, Volkmann J, Krack P, Kopper F, Potter M, Lorenz D, Steinbach M, Klebe S, Hamel W, Schrader B, Weinert D, Muller D, Mehdorn HM, Deuschl G (2003). Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 18:1332–1337

    Article  PubMed  Google Scholar 

  28. Hutchison WD, Allan RJ, Optiz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological Identification of the Subthalamic Nucleus in Surgery for Parkinson’s Disease. Ann Neurol 44:622–628

    Article  PubMed  CAS  Google Scholar 

  29. Jones EG, Wise SP, Coulter JD (1979) Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J Comp Neurol 183:833–881

    Article  PubMed  CAS  Google Scholar 

  30. Krack P, Batir A, Van Blercom N, et al (2003) Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. N Engl J Med 349:1925–1934

    Article  PubMed  CAS  Google Scholar 

  31. Krack P, Benazzouz A, Pollak P, Limousin P, Piallat B, Hoffmann D, Xie J, Benabid AL (1998) Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 13:907–914

    Article  PubMed  CAS  Google Scholar 

  32. Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855

    PubMed  CAS  Google Scholar 

  33. Künzle H (1976) Thalamic projections from the precentral motor cortex in Macaca fascicularis. Brain Res 105:253–267

    Article  PubMed  Google Scholar 

  34. Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L (2002) Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 72:53–58

    Article  PubMed  CAS  Google Scholar 

  35. Leichnetz GR (1986) Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J Comp Neurol 254:460–492

    Article  PubMed  CAS  Google Scholar 

  36. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111

    Article  PubMed  CAS  Google Scholar 

  37. Lin CS, Nicolelis MA, Schneider JS, Chaplin JK Jr (1991) GABAergic pathway from zona incerta to neocortex: clarification. Science 251:1162

    PubMed  CAS  Google Scholar 

  38. Lopez-Flores G, Miguel-Morales J, Teijeiro-Amador J, Vitek J, Perez-Parra S, Fernandez-Melo R, Maragoto C, Alvarez E, Alvarez L, Macias R, Obeso JA (2003) Anatomic and neurophysiological methods for the targeting and lesioning of the subthalamic nucleus: Cuban experience and review. Neurosurgery 52:817–830; discussion, 831

    Article  PubMed  Google Scholar 

  39. Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96:549–564

    Article  PubMed  CAS  Google Scholar 

  40. Magnin M, Jeanmonod D, Morel A, Siegemund M (2001) Surgical control of the human thalamocortical dysrhythmia: II. Pallidothalamic tractotomy in Parkinson’s disease. Thalamus and Related System 1:81–89

    Google Scholar 

  41. Magnin M, Jetzer U, Morel A, Jeanmonod D (2001) Microelectrode recording and macrostimulation in thalamic and subthalamic MRI guided stereotactic surgery. Neurophysiol Clin 31:230–238

    Article  PubMed  CAS  Google Scholar 

  42. Margarinos-Ascone CM, Figueiras-Mendez R, Riva-Meana C, Cordoba-Fernandez A (2000) Subthalamic neuron activity related to tremor and movement in Parkinson’s disease. Eur J Neurosci 12: 2597–2606

    Article  Google Scholar 

  43. McIntyre CC, Grill WM (2000) Selective microstimulation of central nervous system neurons. Ann Biomed Eng 28:219–233

    Article  PubMed  CAS  Google Scholar 

  44. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115:589–595

    Article  PubMed  Google Scholar 

  45. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  46. Monakow KH, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Article  PubMed  CAS  Google Scholar 

  47. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus (published erratum in J Comp Neurol 1998;391:545). J Comp Neurol 387:588–630

    Article  PubMed  CAS  Google Scholar 

  48. Mundinger F (1965) Stereotaxic interventions on the zona incerta area for treatment of extrapyramidal motor disturbances and their results. Confinia Neurologica (Basel) 26:222–230

    CAS  Google Scholar 

  49. Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16:2671–2683

    PubMed  CAS  Google Scholar 

  50. Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16

    Article  PubMed  CAS  Google Scholar 

  51. Nicolelis MA, Chapin JK, Lin RC (1992) Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Res 577:134–141

    Article  PubMed  CAS  Google Scholar 

  52. Oerthel WH, Tappaz ML, Berod A, Mugnaini E (1982) Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta. Brain Res Bull 9:463–474

    Article  Google Scholar 

  53. Pahapill AP, Lozano AM (2000) The pedunculopontine nucleus and Parkinson disease. Brain 123:1767–1783

    Article  PubMed  Google Scholar 

  54. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127

    Article  PubMed  CAS  Google Scholar 

  55. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154

    Article  PubMed  CAS  Google Scholar 

  56. Périer C, Vila M, Féger J, Agid Y, Hirsch EC (2000) Functional activity of zona incerta neurons is altered after nigrostriatal denervation in hemiparkinsonian rats. Exp Neurol 162:215–224

    Article  PubMed  Google Scholar 

  57. Périer C, Tremblay L, Féger J, Hirsch EC (2002) Behavioral consequences of bicuculline injection in the subthalamic nucleus and the zona incerta in rat. J Neurosc 22:8711–8719

    Google Scholar 

  58. Pollak P, Benabid AL, Gross C, Laurent A, Benazzouz A, Hoffmann D, Gentil M, Perret J (1993) Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev Neurol (Paris) 149:175–176

    CAS  Google Scholar 

  59. Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S, Benabid AL (2002) Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17:S155–S161

    Article  PubMed  Google Scholar 

  60. Power BD, Mitrofanis J (2001) Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 436:52–63

    Article  PubMed  CAS  Google Scholar 

  61. Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  62. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342:1484–1491

    Article  PubMed  CAS  Google Scholar 

  63. Ricardo JA (1981) Efferent connections of the subthalamic region in the rat II. The zona incerta. Brain Res 214:43–60

    Article  PubMed  CAS  Google Scholar 

  64. Rodriguez MC, Guridi OJ, Alvarez L, Mewes K, Macias R, Vitek J, DeLong MR, Obeso JA (1998) The subthalamic nucleus and tremor in Parkinson’s disease. Mov Disord 13:S111–S118

    Article  Google Scholar 

  65. Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong MR, Obeso JA (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790

    Article  PubMed  CAS  Google Scholar 

  66. Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR, Obeso JA (2004) Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75:1382–1385

    Article  PubMed  CAS  Google Scholar 

  67. Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE, Lozano AM (2002) Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97:1152–1166

    Article  PubMed  Google Scholar 

  68. Schaltenbrand G, Wahren W, Hassler RG (1977) Atlas for Stereotaxy of the Human Brain, 2nd edn. Stuttgart: Thieme

    Google Scholar 

  69. Shaw VE, Mitrofanis J (2002) Lamination of spinal cells projecting to the zona incerta in rats. J Neurocytol 30:695–704

    Article  Google Scholar 

  70. Spiegel EA, Wycis HT, Szekely EG, Adams J, Flanagan M, Baird HW (1963) Campotomy in various extrapyramidal disorders. Studies in stereoencephalotomy. Cushing Society, Philadelphia 871–884

    Google Scholar 

  71. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370–387

    PubMed  Google Scholar 

  72. Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ, Beric A (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:58–67

    Article  PubMed  Google Scholar 

  73. Talairach J, David M, Tournoux P (1957) Atlas d’Anatomie Stéréotaxique des Noyaux Gris Centraux. Masson, Paris

    Google Scholar 

  74. Thobois S, Mertens P, Guenot M, Hermier M, Mollion H, Bouvard M, Chazot G, Broussole E, Sindou M (2002) Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 249:529–534

    Article  PubMed  CAS  Google Scholar 

  75. Thobois S, Corvaisier S, Mertens P, Di Guardo C, Mollion H, Guenot M, Rochefort F, Chazot G, Sindou M, Broussolle E (2003) The timing of antiparkinsonian treatment reduction after subthalamic nucleus stimulation. Eur Neurol 49:59–63

    Article  PubMed  CAS  Google Scholar 

  76. Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17:S369–S372

    Google Scholar 

  77. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund H-J, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279

    PubMed  Google Scholar 

  78. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61:89–96

    Article  PubMed  Google Scholar 

  79. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–292

    Article  PubMed  CAS  Google Scholar 

Download references

Acnowledgements

The authors thank Dr D Morley for English correction and Mrs S Salvetti for pictures assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mertens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godinho, F., Thobois, S., Magnin, M. et al. Subthalamic nucleus stimulation in Parkinson’s disease. J Neurol 253, 1347–1355 (2006). https://doi.org/10.1007/s00415-006-0222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0222-z

Keywords

Navigation