Skip to main content
Log in

Reactivation of Х chromosome upon reprogramming leads to changes in the replication pattern and 5hmC accumulation

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Once set, the inactive status of the X chromosome in female somatic cells is preserved throughout subsequent cell divisions. The inactive status of the X chromosome is characterized by many features, including late replication. In contrast to induced pluripotent stem cells (iPSCs) in mice, the X chromosome in human female iPSCs usually remains inactive after reprogramming of somatic cells to the pluripotent state, although recent studies point to the possibility of reactivation of the X chromosome. Here, we demonstrated that, during reprogramming, the inactive X chromosome switches from late to synchronous replication, with restoration of the transcription of previously silenced genes. This process is accompanied by accumulation of a new epigenetic mark or intermediate of the DNA demethylation pathway, 5-hydroxymethylcytosine (5hmC), on the activated X chromosome. Our results indicate that the active status of the X chromosome is better confirmed by early replication and the reappearance of 5hmC, rather than by appearance of histone marks of active chromatin, removal of histone marks of inactive chromatin, or an absence of XIST coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

EdU:

5-ethynyl-2′-deoxyuridine

ESCs:

Embryonic stem cells

iPSCs:

Induced pluripotent stem cells

FISH:

Fluorescence in situ hybridization

Xa:

Active X chromosome

Xi:

Inactive X chromosome

References

  • Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Heard E (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8:293–299

    Article  PubMed  CAS  Google Scholar 

  • Bailis JM, Forsburg SL (2003) It's all in the timing: linking S phase to chromatin structure and chromosome dynamics. Cell Cycle 2:303–306

    Article  PubMed  CAS  Google Scholar 

  • Bogomazova AN, Lagarkova MA, Tskhovrebova LV, Shutova MV, Kiselev SL (2011) Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2. Aging 3:584–96

    PubMed Central  PubMed  Google Scholar 

  • Bruck T, Benvenisty N (2011) Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Research 6:187–193

    Article  PubMed  CAS  Google Scholar 

  • Casas-Delucchi CS, Brero A, Rahn HP, Solovei I, Wutz A, Cremer T, Leonhardt H, Cardoso MC (2011) Histone acetylation controls the inactive X chromosome replication dynamics. Nat Commun 2:222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2004) Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci U S A 101:17450–17455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, Liang H, Chen Y, Chen J, Wu Y, Guo L, Zhu J, Zhao X, Peng T, Zhang Y, Chen S, Li X, Li D, Wang T, Pei D (2012) H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 45:34–42

    Article  PubMed  CAS  Google Scholar 

  • Chess A (2012) Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet 13:421–428

    Article  PubMed  CAS  Google Scholar 

  • Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S, Das S, Levasseur DN, Li Z, Xu M, Reik W, Silva JC, Wang J (2013) NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495:370–374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356

    Article  PubMed  CAS  Google Scholar 

  • Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24:310–23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guamieri P, Bhagat G, Vanti WB, Shih A, Levine RL, Nik S, Chen EI, Abelovich A (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488:652–655

    Article  PubMed  CAS  Google Scholar 

  • Escamilla-Del-Arenal M, da Rocha ST, Heard E (2011) Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum Genet 130:307–327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  PubMed  CAS  Google Scholar 

  • Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome research 20:155–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hysolli E, Jung YW, Tanaka Y, Kim KY, Park IH (2012) The lesser known story of X chromosome reactivation: a closer look into the reprogramming of the inactive X chromosome. Cell Cycle 11:229–35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • International Stem Cell Initiative, Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144

    Article  PubMed  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jeppesen P (2000) Immunofluorescence in cytogenetic analysis: method and applications. Gen Mol Biol 23:1107–1114

    Article  Google Scholar 

  • Keohane AM, O’neill LP, Belyaev ND, Lavender JS, Turner BM (1996) X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol 180:618–630

    Article  PubMed  CAS  Google Scholar 

  • Kubiura M, Okano M, Kimura H, Kawamura F, Tada M (2012) Chromosome-wide regulation of euchromatin-specific 5mC to 5hmC conversion in mouse ES cells and female human somatic cells. Chromosome Res 20:837–48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lagarkova MA, Eremeev AV, Svetlakov AV, Rubtsov NB, Kiselev SL (2010a) Human embryonic stem cell lines isolation, cultivation, and characterization. In Vitro Cell Dev Biol Anim 46:284–293

    Article  PubMed  Google Scholar 

  • Lagarkova MA, Shutova MV, Bogomazova AN, Vassina EM, Glazov EA, Zhang P, Rizvanov AA, Chestkov IV, Kiselev SL (2010b) Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell cycle 9:937–946

    Article  PubMed  CAS  Google Scholar 

  • Leeb M, Wutz A (2012) Establishment of epigenetic patterns in development. Chromosoma 121:251–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Lund RJ, Närvä E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13:732–744

    Article  PubMed  CAS  Google Scholar 

  • Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A Model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K (2012) Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10:595–609

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  PubMed  CAS  Google Scholar 

  • Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, Dupre Y, Antonarakis SE (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21:1592–600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silva J, Nichols J, Theunissen TW, Guo G, Van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci U S A 105:4820–4825

    Article  PubMed Central  PubMed  Google Scholar 

  • Soufi A, Donahue G, Zaret KS (2012) Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151:994–1004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P (2011) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS genetics 7(6):e1002154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7:329–342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Teichroeb JH, Betts DH, Vaziri H (2011) Suppression of the imprinted gene NNAT and X-chromosome gene activation in isogenic human iPS cells. PLoS One 6:e23436. doi:10.1371/journal.pone.0023436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tomoda K, Takahashi K, Leung K, Okada A, Narita M, Yamada NA, Eilertson KE, Tsang P, Baba S, White MP, Sami S, Srivastava D, Conklin BR, Panning B, Yamanaka S (2012) Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell 11:91–99

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Willard HF, Latt SA (1976) Analysis of deoxyribonucleic acid replication in human X chromosomes by fluorescence microscopy. Am J Hum Genet 28:213–227

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wutz A (2011) Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12:542–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by RFBR (11-04-01212a) and Ministry of Science and Education (GK 14.512.11.0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Lagarkova.

Additional information

Alexandra N. Bogomazova and Maria A. Lagarkova contributed equally to the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomazova, A.N., Lagarkova, M.A., Panova, A.V. et al. Reactivation of Х chromosome upon reprogramming leads to changes in the replication pattern and 5hmC accumulation. Chromosoma 123, 117–128 (2014). https://doi.org/10.1007/s00412-013-0433-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0433-x

Keywords

Navigation