Skip to main content

Advertisement

Log in

The relationship between tinnitus pitch and hearing sensitivity

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Tinnitus is the phantom perception of sounds. No single theory explaining the cause of tinnitus enjoys universal acceptance, however, it is usually associated with hearing loss. The aim of this study was to investigate the relationship between tinnitus pitch and audiometry, minimum masking levels (MML), tinnitus loudness, and distortion product otoacoustic emissions (DPOAE). This was a retrospective analysis of participant’s records from the University of Auckland Hearing and Tinnitus Clinic database. The sample consisted of 192 participants with chronic tinnitus (more than 18 months) who had comprehensive tinnitus assessment from March 2008 to January 2011. There were 116 males (mean = 56.5 years, SD = 12.96) and 76 females (mean = 58.7 years, SD = 13.88). Seventy-six percent of participants had a tinnitus pitch ≥8 kHz. Tinnitus pitch was most often matched to frequencies at which hearing threshold was 40–60 (T50) dBHL. There was a weak but statistically significant positive correlation between tinnitus pitch and T50 (r = 0.15 at p < 0.05). No correlation was found between tinnitus pitch and DPOAEs, MML, audiometric edge and worst threshold. The strongest audiometric predictor for tinnitus pitch was the frequency at which threshold was approximately 50 dBHL. We postulate that this may be due to a change from primarily outer hair cell damage to lesions including inner hair cells at these levels of hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eggermont JJ (2003) Central tinnitus. Auris Nasus Larynx 30:S7–S12

    Article  PubMed  Google Scholar 

  2. Stouffer JL, Tyler RS (1990) Characterization of tinnitus by tinnitus patients. J Speech Hear Disord 55:439–453

    CAS  PubMed  Google Scholar 

  3. Ahmad N, Seidman M (2004) Tinnitus in the older adult: epidemiology, pathophysiology and treatment options. Drugs Aging 21:297–305

    Article  PubMed  Google Scholar 

  4. Crummer RW, Hassan GA (2004) Diagnostic approach to tinnitus. Am Fam Physician 69:120–127

    PubMed  Google Scholar 

  5. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682. doi:10.1016/j.tins.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  6. Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW (1998) The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50:114–120

    Article  CAS  PubMed  Google Scholar 

  7. Lockwood AH, Salvi RJ, Burkard RF (2002) Tinnitus. N Engl J Med 347:904–910

    Article  PubMed  Google Scholar 

  8. Zenner HP, Pfister M, Birbaumer N (2006) Tinnitus sensitization: sensory and psychophysiological aspects of a new pathway of acquired centralization of chronic tinnitus. Otol Neurotol 27:1054–1063. doi:10.1097/01.mao.0000231604.64079.77

    Article  PubMed  Google Scholar 

  9. Kaltenbach JA, Zhang J, Finlayson P (2005) Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res 206:200–226

    Article  PubMed  Google Scholar 

  10. Marcus M, Rainer K, Wolfgang A, Elmar O (2003) Auditory nerve fibre responses to salicylate revisited. Hear Res 183:37–43. doi:10.1016/s0378-5955(03)00217-x

    Article  Google Scholar 

  11. Norena AJ (2011) An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 35:1089–1109. doi:10.1016/j.neubiorev.2010.11.003

    Article  PubMed  Google Scholar 

  12. Nicolas-Puel C, Faulconbridge RL, Guitton M, Puel JL, Mondain M, Uziel A (2002) Characteristics of tinnitus and etiology of associated hearing loss: a study of 123 patients. International Tinnitus Journal 8:37–44

    PubMed  Google Scholar 

  13. Heffner HE, Heffner RS (2007) Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci 46:20–22

    CAS  PubMed  Google Scholar 

  14. Laukli E, Mair IWS (1985) High-frequency audiometry normative studies and preliminary experiences. Scand Audiol 14:151–158. doi:10.3109/01050398509045936

    Article  CAS  PubMed  Google Scholar 

  15. Masayuki S, Kimitaka K, Tomokazu K (2000) Extended high-frequency ototoxicity induced by the first administration of cisplatin. Otolaryngol Head Neck Surg 122:828–833

    Article  Google Scholar 

  16. Yildirim G, Berkiten G, Kuzdere M, Ugras H (2010) High frequency audiometry in patients presenting with tinnitus. J Internat Adv Otol 6:401–407

    Google Scholar 

  17. Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol (Stockh) 126:27–33. doi:10.1080/03655230600895358

    Article  Google Scholar 

  18. Shim HJ, Kim SK, Park CH, Lee SH, Yoon SW, Ki AR, Chung DH, Yeo SG (2009) Hearing abilities at ultra-high frequency in patients with tinnitus. Clin Exp Otorhinolaryngol 2:169–174

    Article  PubMed Central  PubMed  Google Scholar 

  19. König O, Schaette R, Kempter R, Gross M (2006) Course of hearing loss and occurrence of tinnitus. Hear Res 221:59–64

    Article  PubMed  Google Scholar 

  20. Sereda M, Hall DA, Bosnyak DJ, Edmondson JM, Roberts LE, Adjamian P, Palmer AR (2011) Re-examining the relationship between audiometric profile and tinnitus pitch. Int J Audiol 50:303–312

    Article  PubMed Central  PubMed  Google Scholar 

  21. Henry JA, Flick CL, Gilbert A, Ellingson RM, Fausti SA (2001) Comparison of two computer-automated procedures for tinnitus pitch matching. J Rehabil Res Dev 38:557–566

    CAS  PubMed  Google Scholar 

  22. Henry JA, Meikle MB (1999) Pulsed versus continuous tones for evaluating the loudness of tinnitus. J Am Acad Audiol 10:261–272

    CAS  PubMed  Google Scholar 

  23. Meikle MB, Vernon J, Johnson RM (1984) The perceived severity of tinnitus. Some observations concerning a large population of tinnitus clinic patients. Otolaryngol Head Neck Surg 92:689–696

    CAS  PubMed  Google Scholar 

  24. Norena A, Micheyl C, Chéry CS, Collet L (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7:358–369

    Article  PubMed  Google Scholar 

  25. Eggermont JJ, Komiya H (2000) Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res 142:89–101

    Article  CAS  PubMed  Google Scholar 

  26. Moore BCJ, Huss M, Vickers DA, Glasberg BR, Alcantara JI (2000) A test for the diagnosis of dead regions in the cochlea. Br J Audiol 34:205–224

    Article  CAS  PubMed  Google Scholar 

  27. Moore BCJ (2004) Dead regions in the cochlea: conceptual foundations, diagnosis, and clinical applications. Ear Hear 25:98–116

    Article  PubMed  Google Scholar 

  28. Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38. doi:10.1016/s0378-5955(03)00074-1

    Article  PubMed  Google Scholar 

  29. Kaltenbach JA, Zhang JS, Zacharek MA (2004) Neural correlates of tinnitus. In: Snow JB (ed) Tinnitus: theory and management. BC Decker Inc, Hamilton, pp 141–161

    Google Scholar 

  30. Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22:74–80. doi:10.1016/s0166-2236(98)01303-4

    Article  CAS  PubMed  Google Scholar 

  31. Lenoir M, Puel J-L (1987) Dose-dependent changes in the rat cochlea following aminoglycoside intoxidation. II. Histological study. Hear Res 26:199–209. doi:10.1016/0378-5955(87)90112-2

    Article  CAS  PubMed  Google Scholar 

  32. Hawkins JE Jr (1959) The ototoxicity of kanamycin. Trans Am Otol Soc 47:67–86

    PubMed  Google Scholar 

  33. Searchfield GD, Muñoz DJB, Thorne PR (2004) Ensemble spontaneous activity in the guinea-pig cochlear nerve. Hear Res 192:23–35. doi:10.1016/j.heares.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  34. Rajan R, Irvine DRF, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338:17–49. doi:10.1002/cne.903380104

    Article  CAS  PubMed  Google Scholar 

  35. Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471. doi:10.1002/cne.902820311

    Article  CAS  PubMed  Google Scholar 

  36. Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A (2006) High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res 222:108–114. doi:10.1016/j.heares.2006.09.003

    Article  PubMed  Google Scholar 

  37. Schuknecht HF (ed) (1993) Pathology of the ear, 2nd edn. Lea Febiger, Baltimore

    Google Scholar 

  38. Robertson DJ (2003) The role of the threshold equalising noise (TEN) test for IHC dead regions in the assessment of tinnitus. unpublished master’s dissertation, University of Auckland, Auckland

  39. Norena A, Micheyl C, Chery-Croze S (2000) An auditory negative after-image as a human model of tinnitus. Hear Res 149:24–32

    Article  CAS  PubMed  Google Scholar 

  40. Parra LC, Pearlmutter BA (2007) Illusory percepts from auditory adaptation. J Acoust Soc Am 121:1632–1641

    Article  PubMed  Google Scholar 

  41. Moore BCJ, Vinay, Sandhya (2010) The relationship between tinnitus pitch and the edge frequency of the audiogram in individuals with hearing impairment and tonal tinnitus. Hear Res 261:51–56

    Google Scholar 

  42. Pan T, Tyler RS, Ji H, Coelho C, Gehringer AK, Gogel SA (2009) The relationship between tinnitus pitch and the audiogram. Int J Audiol 48:277–294. doi:10.1080/14992020802581974

    Article  PubMed  Google Scholar 

  43. Tyler R (2000) Psychoacoustical measurement of tinnitus. In: Tyler R (ed) Tinnitus handbook. Singular Thompson Learning, San Diego, pp 149–179

    Google Scholar 

  44. Schaette R, Kempter R (2009) Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. J Neurophysiol 101:3042–3052. doi:10.1152/jn.91256.2008

    Article  PubMed  Google Scholar 

  45. Henry JA, Meikle M, Gilbert A (2002) Proceeding of the sixth international tinnitus seminar. In: Jonathan Hazell (ed) International tinnitus seminar, Cambridge 1999, pp 51–57

  46. Schecklmann M, Vielsmeier V, Steffens T, Landgrebe M, Langguth B, Kleinjung T (2012) Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLoS ONE 7:e34878. doi:10.1371/journal.pone.0034878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    Article  CAS  PubMed  Google Scholar 

  48. Elsaeid MT (2009) Evaluation of tinnitus patients with normal hearing sensitivity using TEOAEs and TEN test. Auris Nasus Larynx 36:633–636. doi:10.1016/j.anl.2009.01.002

    Article  Google Scholar 

  49. Granjeiro RC, Kehrle HM, Bezerra RL, Almeida VF, Sampaio ALL, Oliveira CA (2008) Transient and distortion product evoked oto-acoustic emissions in normal hearing patients with and without tinnitus. Otolaryngol Head Neck Surg 138:502–506. doi:10.1016/j.otohns.2007.11.012

    Article  PubMed  Google Scholar 

  50. Coad G (2006) Tinnitus and cochlear dead regions. Unpublised masters dissertation, University of Auckland, Auckland

  51. Jastreboff PJ, Gray WC, Gold SL (1996) Neurophysiological approach to tinnitus patients. Am J Otol 17:236–240

    CAS  PubMed  Google Scholar 

  52. Feldmann H (1971) Homolateral and contralateral masking of tinnitus by noise-bands and by pure tones. Int J Audiol 10:138–144. doi:10.3109/00206097109072551

    Article  CAS  Google Scholar 

  53. Schaette R, König O, Hornig D, Gross M, Kempter R (2010) Acoustic stimulation treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated frequency range. Hear Res 269:95–101. doi:10.1016/j.heares.2010.06.022

    Article  PubMed  Google Scholar 

  54. McNeil C, Tavora-Vieira D, Alnafjan F, Searchfield GD, Welch D (2012) Tinnitus pitch, masking, and the effectiveness of hearing aids for tinnitus therapy. Int J Audiol (in press)

  55. Moore BCJ (ed) (2007) Cochlear hearing loss: physiological. Psychological and technical issues. Wiley, Chichester

    Google Scholar 

  56. Goldstein BA, Lenhardt ML, Shulman A (2005) Tinnitus improvement with ultra high frequency vibration therapy. Int Tinnitus J 11:14–22

    PubMed  Google Scholar 

  57. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant D. Searchfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekhawat, G.S., Searchfield, G.D. & Stinear, C.M. The relationship between tinnitus pitch and hearing sensitivity. Eur Arch Otorhinolaryngol 271, 41–48 (2014). https://doi.org/10.1007/s00405-013-2375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-013-2375-6

Keywords

Navigation