Skip to main content

Advertisement

Log in

Anti-osteoporosis therapy and fracture healing

  • Osteoporotic Fracture Management
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

A number of medications are approved for treatment of osteoporosis. As mode of action usually is anti-catabolic/anti-resorptive or anabolic, it is of interest to know whether these drugs affect not only normal bone remodeling, but also fracture healing.

Objective

The purpose of this paper is to give a short overview of the potential effect of various anti-osteoporotic medication on fracture healing.

Methods

A narrative literature review was performed to describe the current knowledge.

Results

Anti-catabolic/anti-resorptive drugs: for bisphosphonates, the most common class of drugs in this group, experimental studies have shown a larger and stronger callus and delayed remodeling but no evidence of delayed healing. A human monoclonal antibody to RANKL is another anti-catabolic drug, with the only report to date showing enhanced healing in an animal model. Strontium ranelate is a drug where both anti-catabolic and a weak anabolic effect have been proposed, with experimental data ranging from no effect to significant increase in both callus volume and strength. Anabolic drugs: PTH has demonstrated accelerated healing of various experimental fractures and of distal radius and pelvic fractures in humans. While the exact mechanism is not fully understood, PTH results in increased recruitment and differentiation of chondrocytes and enhancement of endochondral ossification. A monoclonal antibody to block sclerostin is another potential anabolic pathway, where animal data have shown increase in bone mass and strength. The potential effect on fracture healing is yet to be studied.

Conclusion

There are still large gaps in the understanding of the potential effect of anti-osteoporotic drugs on fracture healing, although based on present knowledge a recent or present fracture should not be considered as a contraindication to such treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seeman E, Compston J, Adachi J, Brandi ML, Cooper C, Dawson-Hughes B, Jonsson B, Pols H, Cramer JA (2007) Non-compliance: the Achilles’ heel of anti-fracture efficacy. Osteoporos Int 18(6):711–719

    Article  CAS  PubMed  Google Scholar 

  2. Giangregorio L, Papaioannou A, Cranney A, Zytaruk N, Adachi JD (2006) Fragility fractures and the osteoporosis care gap: an international phenomenon. Semin Arthr Rheum 35(5):293–305

    Article  CAS  Google Scholar 

  3. Goldhahn J, Little D, Mitchell P, Fazzalari NL, Reid IR, Aspenberg P, Marsh D (2010) Evidence for anti-osteoporosis therapy in acute fracture situations–recommendations of a multidisciplinary workshop of the International Society for Fracture Repair. Bone 46(2):267–271

    Article  CAS  PubMed  Google Scholar 

  4. Tarvainen R, Olkkonen H, Nevalainen T, Hyvonen P, Arnala I, Alhava E (1994) Effect of clodronate on fracture healing in denervated rats. Bone 15(6):701–705

    Article  CAS  PubMed  Google Scholar 

  5. Madsen JE, Berg-Larsen T, Kirkeby OJ, Falch JA, Nordsletten L (1998) No adverse effects of clodronate on fracture healing in rats. Acta Orthop Scand 69(5):532–536

    Article  CAS  PubMed  Google Scholar 

  6. Koivukangas A, Tuukkanen J, Kippo K, Jamsa T, Hannuniemi R, Pasanen I, Vaananen K, Jalovaara P (2003) Long-term administration of clodronate does not prevent fracture healing in rats. Clin Orthop Relat Res 408:268–278

    Article  PubMed  Google Scholar 

  7. Li C, Mori S, Li J, Kaji Y, Akiyama T, Kawanishi J, Norimatsu H (2001) Long-term effect of incadronate disodium (YM-175) on fracture healing of femoral shaft in growing rats. J Bone Miner Res 16(3):429–436

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Mori S, Kaji Y, Mashiba T, Kawanishi J, Norimatsu H (1999) Effect of bisphosphonate (incadronate) on fracture healing of long bones in rats. J Bone Miner Res 14(6):969–979

    Article  CAS  PubMed  Google Scholar 

  9. Amanat N, McDonald M, Godfrey C, Bilston L, Little D (2007) Optimal timing of a single dose of zoledronic acid to increase strength in rat fracture repair. J Bone Miner Res 22(6):867–876

    Article  CAS  PubMed  Google Scholar 

  10. McDonald MM, Dulai S, Godfrey C, Amanat N, Sztynda T, Little DG (2008) Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone 43(4):653–662

    Article  CAS  PubMed  Google Scholar 

  11. Little DG, Cornell MS, Briody J, Cowell CT, Arbuckle S, Cooke-Yarborough CM (2001) Intravenous pamidronate reduces osteoporosis and improves formation of the regenerate during distraction osteogenesis. A study in immature rabbits. J Bone Joint Surg 83(7):1069–1074

    Article  CAS  Google Scholar 

  12. Little DG, Cornell, Hile, Briody J, Cowell CT, Bilston L (2001) Effect of pamidronate on distraction osteogenesis and fixator-related osteoporosis. Injury 32(4):SD14–SD20

    Article  PubMed  Google Scholar 

  13. Auer JA, Goodship A, Arnoczky S, Pearce S, Price J, Claes L, von Rechenberg B, Hofmann-Amtenbrinck M, Schneider E, Muller-Terpitz R, Thiele F, Rippe KP, Grainger DW (2007) Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet Disord 8:72

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gerstenfeld LC, Sacks DJ, Pelis M, Mason ZD, Graves DT, Barrero M, Ominsky MS, Kostenuik PJ, Morgan EF, Einhorn TA (2009) Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24(2):196–208

    Article  CAS  PubMed  Google Scholar 

  15. Ma YL, Marin F, Stepan J, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G, de la Pena MP, Kekow J, Martinez G, Malouf J, Zeng QQ, Wan X, Recker RR (2011) Comparative effects of teriparatide and strontium ranelate in the periosteum of iliac crest biopsies in postmenopausal women with osteoporosis. Bone 48(5):972–978

    Google Scholar 

  16. Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20(8):1417–1428

    Article  CAS  PubMed  Google Scholar 

  17. Ma YL, Zeng QQ, Porras LL, Harvey A, Moore TL, Shelbourn TL, Dalsky GP, Wronski TJ, Aguirre JI, Bryant HU, Sato M (2011) Teriparatide [rhPTH (1-34)], but not strontium ranelate, demonstrated bone anabolic efficacy in mature, osteopenic, ovariectomized rats. Endocrinology 152(5):1767–1778

    Google Scholar 

  18. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A (2001) Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 29(2):176–179

    Article  CAS  PubMed  Google Scholar 

  19. Cebesoy O, Tutar E, Kose KC, Baltaci Y, Bagci C (2007) Effect of strontium ranelate on fracture healing in rat tibia. Joint Bone Spine 74(6):590–593

    Article  PubMed  Google Scholar 

  20. Bruel A, Olsen J, Birkedal H, Risager M, Andreassen TT, Raffalt AC, Andersen JE, Thomsen JS (2011) Strontium is incorporated into the fracture callus but does not influence the mechanical strength of healing rat fractures. Calcif Tissue Int 88(2):142–152

    Article  PubMed  Google Scholar 

  21. Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2011) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86(1):82–89

    Article  Google Scholar 

  22. Hock JM, Gera I (1992) Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res 7(1):65–72

    Article  CAS  PubMed  Google Scholar 

  23. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, Toben D, Jacobsen KA, Al-Sebaei MO, Song M, Trackman PC, Morgan EF, Gerstenfeld LC, Barnes GL (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 22(12):1903–1912

    Article  CAS  PubMed  Google Scholar 

  24. Verhaar HJ, Lems WF (2009) PTH-analogs: comparable or different? Arch Gerontol Geriatr 49(2):e130–e132

    Article  CAS  PubMed  Google Scholar 

  25. Andreassen TT, Ejersted C, Oxlund H (1999) Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 14(6):960–968

    Article  CAS  PubMed  Google Scholar 

  26. Andreassen TT, Fledelius C, Ejersted C, Oxlund H (2001) Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 72(3):304–307

    Article  CAS  PubMed  Google Scholar 

  27. Chalidis B, Tzioupis C, Tsiridis E, Giannoudis PV (2007) Enhancement of fracture healing with parathyroid hormone: preclinical studies and potential clinical applications. Expert Opin Investig Drugs 16(4):441–449

    Article  CAS  PubMed  Google Scholar 

  28. Ellegaard M, Jorgensen NR, Schwarz P (2010) Parathyroid hormone and bone healing. Calcif Tissue Int 87(1):1–13

    Article  CAS  PubMed  Google Scholar 

  29. Holzer G, Majeska RJ, Lundy MW, Hartke JR, Einhorn TA (1999) Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res 366:258–263

    Article  PubMed  Google Scholar 

  30. Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, Yamazaki M (2002) Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res 17(11):2038–2047

    Article  CAS  PubMed  Google Scholar 

  31. Skripitz R, Andreassen TT, Aspenberg P (2000) Strong effect of PTH (1-34) on regenerating bone: a time sequence study in rats. Acta Orthop Scand 71(6):619–624

    Article  CAS  PubMed  Google Scholar 

  32. Skripitz R, Andreassen TT, Aspenberg P (2000) Parathyroid hormone (1-34) increases the density of rat cancellous bone in a bone chamber. A dose-response study. J Bone Joint Surg 82(1):138–141

    Article  CAS  Google Scholar 

  33. Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, Seki A, Sun YX, Yamamoto T (2007) Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 40(6):1475–1482

    Article  CAS  PubMed  Google Scholar 

  34. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, Garcia-Hernandez PA, Recknor CP, Einhorn TA, Dalsky GP, Mitlak BH, Fierlinger A, Lakshmanan MC (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25(2):404–414

    Article  CAS  PubMed  Google Scholar 

  35. Aspenberg P, Johansson T (2010) Teriparatide improves early callus formation in distal radial fractures. Acta Orthop 81(2):234–236

    Article  PubMed  Google Scholar 

  36. Peichl P, Holzer LA, Maier R, Holzer G (2011) Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 93(17):1583–1587

    Article  PubMed  Google Scholar 

  37. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588

    Article  CAS  PubMed  Google Scholar 

  38. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. Faseb J 19(13):1842–1844

    CAS  PubMed  Google Scholar 

  39. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24(10):1651–1661

    Article  CAS  PubMed  Google Scholar 

  40. Fleisch H (2001) Can bisphosphonates be given to patients with fractures? J Bone Miner Res 16(3):437–440

    Article  CAS  PubMed  Google Scholar 

  41. Einhorn TA (2010) Can an anti-fracture agent heal fractures? Clin Cases Miner Bone Metab 7(1):11–14

    PubMed Central  PubMed  Google Scholar 

  42. Pountos I, Georgouli T, Blokhuis TJ, Pape HC, Giannoudis PV (2008) Pharmacological agents and impairment of fracture healing: what is the evidence? Injury 39(4):384–394

    Article  PubMed  Google Scholar 

  43. Goh SK, Yang KY, Koh JS, Wong MK, Chua SY, Chua DT, Howe TS (2007) Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg 89(3):349–353

    Article  Google Scholar 

  44. Kwek EB, Goh SK, Koh JS, Png MA, Howe TS (2008) An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury 39(2):224–231

    Article  PubMed  Google Scholar 

  45. Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG (2008) Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma 22(5):346–350

    Article  PubMed  Google Scholar 

  46. Schilcher J, Aspenberg P (2009) Incidence of stress fractures of the femoral shaft in women treated with bisphosphonate. Acta Orthopaedica 80(4):413–415

    Article  PubMed  Google Scholar 

  47. Schilcher J, Michaelsson K, Aspenberg P (2011) Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med 364(18):1728–1737

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sune Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, S., Fazzalari, N.L. Anti-osteoporosis therapy and fracture healing. Arch Orthop Trauma Surg 134, 291–297 (2014). https://doi.org/10.1007/s00402-012-1558-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1558-8

Keywords

Navigation