Skip to main content
Log in

High shear rate viscometry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We investigate the use of two distinct and complementary approaches in measuring the viscometric properties of low viscosity complex fluids at high shear rates up to 80,000 s−1. Firstly, we adapt commercial controlled-stress and controlled-rate rheometers to access elevated shear rates by using parallel-plate fixtures with very small gap settings (down to 30 μm). The resulting apparent viscosities are gap dependent and systematically in error, but the data can be corrected—at least for Newtonian fluids—via a simple linear gap correction originally presented by Connelly and Greener, J. Rheol, 29(2):209–226, 1985). Secondly, we use a microfabricated rheometer-on-a-chip to measure the steady flow curve in rectangular microchannels. The Weissenberg–Rabinowitsch–Mooney analysis is used to convert measurements of the pressure-drop/flow-rate relationship into the true wall-shear rate and the corresponding rate-dependent viscosity. Microchannel measurements are presented for a range of Newtonian calibration oils, a weakly shear-thinning dilute solution of poly(ethylene oxide), a strongly shear-thinning concentrated solution of xanthan gum, and a wormlike micelle solution that exhibits shear banding at a critical stress. Excellent agreement between the two approaches is obtained for the Newtonian calibration oils, and the relative benefits of each technique are compared and contrasted by considering the physical processes and instrumental limitations that bound the operating spaces for each device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Baek SG, Magda JJ (2003) Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N1 and N2 measurements. J Rheol 47(5):1249–1260

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley

  • Bird RB, Turian RM (1962) Viscous heating effects in a cone and plate viscometer. Chem Eng Sci 17(5):331–334

    Article  CAS  Google Scholar 

  • Clasen C, Gearing BP, McKinley GH (2006) The flexure-based microgap rheometer (FMR). J Rheol 6(50):883–905

    Article  Google Scholar 

  • Clasen C, McKinley GH (2004) Gap-depedent microrheometry of complex liquids. J Non-Newtonian Fluid Mech 124:1–10

    Article  CAS  Google Scholar 

  • Connelly RW, Greener J (1985) High-shear viscometry with a rotational parallel-disk device. J Rheol 29(2):209–226

    Article  CAS  Google Scholar 

  • Davies GA, Stokes JR (2005) On the gap error in parallel plate rheometry that arises from the presence of air when zeroing the gap. J Rheol 49(4):919–922

    Article  CAS  Google Scholar 

  • Degré G, Joseph P, Tabeling P (2006) Rheology of complex fluids by particle image velocimetry in microchannels. Appl Phys Lett 89(024104):1–3

    Google Scholar 

  • Dhinojwala A, Granick S (1997) Micron-gap rheo-optics with parallel plates. J Chem Phys 107(20):8664–8667

    Article  CAS  Google Scholar 

  • Dontula P, Macosko CW, Scriven LE (1999) Does the viscosity of glycerin fall at high shear rates? Ind Eng Chem Res 38:1729–1735

    Article  CAS  Google Scholar 

  • Duda JL, Klaus EE, Lin S-C (1988) Capillary viscometry study of non-Newtonian fluids: influence of viscous heating. Ind Eng Chem Res 27:352–361

    Article  CAS  Google Scholar 

  • Dudgeon DJ, Wedgewood LE (1994) A domain perturbation study of steady flow in a cone-and-plate rheometer of non-ideal geometry. Rheol Acta 33:369–384

    Article  CAS  Google Scholar 

  • Erickson D, Lu F, Li D, White T, Gao J (2002) An experimental investigation into the dimension-sensitive viscosity of polymer containing lubricant oils in microchannels. Exp Thermal Fluid Sci 25:623–630

    Article  CAS  Google Scholar 

  • Granick S, Zhu Y, Lee H (2003) Slippery questions about complex fluids flowing past solids. Nat Mater 2:221–227

    Article  CAS  Google Scholar 

  • Guillot P, Panizza P, Joanicot J-B, Salmon M, Colin A (2006) Viscosimeter on a microfluidic chip. Langmuir 22:6438–6445

    Article  CAS  Google Scholar 

  • Hudson SD, Phelan FR, Handler MD, Cabral JT, Migler KB, Amis EJ (2004) Microfluidic analog of the four-roll mill. Appl Phys Lett 85(2):335–337

    Article  CAS  Google Scholar 

  • Kang K, Lee LJ, Koelling KW (2005) High shear microfluidics and its application in rheological measurement. Exp Fluids 38:222–232

    Article  CAS  Google Scholar 

  • Kramer J, Uhl JT, Prud’Homme RK (1987) Measurement of the viscosity of guar gum solutions to 50,000 s−1 using a parallel plate rheometer. Polym Eng Sci 27(8):598–602

    Article  CAS  Google Scholar 

  • Kulicke W-M, Porter RS (1981) High-shear viscometry of polymer solutions. J Polym Sci 19:1173–1176

    CAS  Google Scholar 

  • Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip boundary condition, handbook of experimental fluid dynamics. Springer

  • Laun HM (1983) Polymer melt rheology with a slit die. Rheol Acta 22:171–185

    Article  CAS  Google Scholar 

  • Lodge AS, de Vargas L (1983) Positive hole pressures and negative exit pressures generated by molten polyethylene flowing through a slit die. Rheol Acta 22:151–170

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements and applications. Wiley-VCH

  • Marrian CRK, Tennant DM (2003) Nanofabrication. J Vac Sci Technol A 21(5):207–215

    Article  Google Scholar 

  • McKenna GB (2006) Commentary on rheology of polymers in narrow gaps. Eur Phys J E 19(1):101–108

    Article  CAS  Google Scholar 

  • Méndez-Sánchez AF, Pérez-González J, de Vargas L, Castrejón-Pita JR, Castrejón-Pita AA, Huelsz G (2003) Particle image velocimetry of the unstable capillary flow of a micellar solution. J Rheol 47(6):1455–1466

    Article  Google Scholar 

  • Merrill EW (1954) A coaxial cylinder viscometer for the study of fluids under high velocity gradients. J Coll Sci 9:7–19

    Article  CAS  Google Scholar 

  • Milas M, Rinaudo M, Knipper M, Schuppiser JL (1990) Flow and viscoelastic properties of xanthan gum solutions. Macromolecules 23(9):2506–2511

    Article  CAS  Google Scholar 

  • Mriziq KS, Dai HJ, Dadmun MD, Jellison GE, Cochran HD (2004) High-shear-rate optical rheometer. Rev Sci Instrum 75(6):2171–2176

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Granick S (2001) Micro- and nanorheology. Curr Opin Colloid Interface Sci 6:423–429

    Article  CAS  Google Scholar 

  • Nguyen N-T, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House

  • Obot NT (2002) Toward a better understanding of friction and heat/mass transfer in microchannels—a literature review. Microscale Thermophys Eng 6(3):155–173

    Article  Google Scholar 

  • Olagunju DO (1994) Effect of free surface inertia on viscoelastic parallel plate flow. J Rheol 38(1):151–168

    Article  CAS  Google Scholar 

  • Olagunju DO (2003) Analytical solutions for non-isothermal viscoelastic torsional flow in a bounded domain. J Non-Newtonian fluid Mech 112:85–100

    Article  CAS  Google Scholar 

  • Olagunju DO, Cook LP, McKinley GH (2002) Effect of viscous heating on linear stability of viscoelastic cone-and-plate flow: axisymmetric case. J Non-Newtonian Fluid Mech 102:321–342

    Article  CAS  Google Scholar 

  • O’Neill PL, Stachowiak GW (1996) A high shear rate, high pressure microviscometer. Tribology Int 29(7):547–557

    Article  CAS  Google Scholar 

  • Peng XF, Peterson GP, Wang BX (1994) Frictional flow characteristics of water flowing through rectangular microchannels. Exp Heat Transf 7(4):249–264

    CAS  Google Scholar 

  • Radulescu OD, Olmsted PP, Decruppe JS, Lerouge F, Berret J, Porte G (2003) Time scales in shear banding of wormlike micelles. Europhys Lett 62(2):230–236

    Article  CAS  Google Scholar 

  • Ram A (1961) High-shear viscometry of polymer solutions. ScD Thesis. Massacusetts Institute of Technology, Boston, MA

  • Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Molecular Phys 74(5):933–973

    Article  CAS  Google Scholar 

  • Rothstein J, McKinley GH (2001) Non-isothermal modification of purely elastic flow instabilities in torsional flows of polymeric fluids. Phys Fluids 13–2:382–396

    Article  Google Scholar 

  • Talbot AF (1974) High shear viscometry of concentrated solutions of poly (alkylmethacrylate) in a petroleum lubricating oil. Rheol Acta 13:305–317

    Article  CAS  Google Scholar 

  • Tanner RI, Keentok M (1983) Shear fracture in cone–plate rheometry. J Rheol 27:47–57

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  • Zhang S, Olagunju DO (2005) Axisymmetric finite element solution of non-isothermal parallel-plate flow. Appl Math Comput 171:1081–1094

    Article  Google Scholar 

  • Zimmerman WB, Rees JM, Craven TJ (2006) Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction. Microfluid Nanofluid 2:481–492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. S.-G. Baek and Dr. M. Yi of Rheosense for providing us with prototype microchannel designs. This research was supported in part by NASA (grant NNC04GA41G), NSF (DMS-0406590) and a gift from the Procter and Gamble Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Pipe.

Appendix

Appendix

In this appendix, we outline the difficulties in adapting the expression for the rate-dependent viscosity measured using a parallel plate device (Eq. 7):

$$ \eta_{\rm true}(\dot{\gamma}_{\rm true}) = \frac{\mathcal{T}/2 \pi R^3}{\dot{\gamma}_{\rm true}}\left[3+\frac{{\rm d} (\ln \mathcal{T}/2 \pi R^3)}{{\rm d}(\ln\dot{\gamma}_{\rm true})}\right], $$
(28)

to include the linear gap error analysis of Connelly and Greener. We start by noting that the analysis can follow two distinct approaches: one, to find the gap error ε where the apparent shear rate \(\dot{\gamma}_{\rm a}\) is held constant and the gap height H is altered and, the other, to find the true rate-dependent viscosity where the gap height H is held constant and the shear rate or rotation rate is altered.

Where possible the analysis to find the gap height error ε should be performed in the zero shear rate region so that the fluid viscosity is not a function of applied shear rate. However, for fluids that start shear thinning at very low shear rates, this can result in shear stresses below the resolution of the rheometer torque transducer, and it is not possible to access this region. In this case, we expect the apparent viscosity to be a function of both the true shear rate and the gap setting, and we want to find the gap error ε as a function of the apparent shear rate \(\dot{\gamma}_{\rm a} = {\Omega R}/{H}\), which can be commanded in the software. We start from the expression for the true shear rate \(\dot{\gamma}_{\rm true} = {\Omega R}/(H + \epsilon)\):

$$ {\dot{\gamma}_{\rm true}} = {\dot{\gamma}_{\rm a}}\left(\frac{H}{H + \epsilon}\right), $$
(29)

and, differentiating using the chain rule, we find:

$$ \left.\frac{{\rm{d}}\dot{\gamma}_{\rm true}}{{\rm{d}}\dot{\gamma}_{\rm a}}\right|_{\Omega} = \left(\frac{\partial\dot{\gamma}_{\rm true}}{\partial H}\right)_{\Omega}\frac{{\rm d}H}{{\rm d}\dot{\gamma}_{\rm a}}=\left(\frac{H}{H + \epsilon}\right)^2. $$
(30)

Thus, we can rewrite Eq. 28 in terms of the apparent shear rate:

$$ \begin{array}{*{20}l} \eta_{\rm true} &=& \frac{\mathcal{T}/2 \pi R^3}{\dot{\gamma}_{\rm a}} \left(\!\frac{H + \epsilon}{H}\!\right)\times\\ &&\times\left[3\!+\!\left(\!\frac{H}{H+\epsilon}\!\right)\left.\frac{{\rm d} (\ln \mathcal{T}/2 \pi R^3)}{{\rm d}(\ln\dot{\gamma}_{\rm a})}\right|_{\Omega}\right]. \end{array}$$
(31)

To solve for the gap error ε, we cast Eq. 31 in terms of the apparent viscosity η a (c.f. Eq. 6):

$$ \begin{array}{*{20}l} \frac{1}{\eta_{\rm a}} &=& \frac{1}{\eta_{\rm true}} \left(\!1+\frac{\epsilon}{H}\!\right)\frac{1}{4}\times \\ &&\times\left[3\!+\!\left(\!\frac{1}{1+\epsilon/H}\!\right)\left.\frac{{\rm d} (\ln \mathcal{T}/2 \pi R^3)}{{\rm d}(\ln\dot{\gamma}_{\rm a})}\right|_{\Omega}\right], \end{array}$$
(32)

and we note that, for a complex liquid outside the zero shear-viscosity regime, 1/η a is a nonlinear function of 1/H. For a Newtonian viscous response in which \(\tau\sim\dot{\gamma}_{\rm a}\), we recover Eq. 6, and 1/η a varies linearly with 1/H.

We now turn to the case where we wish to determine the rate-dependent viscosity as a function of the apparent shear rate for a fixed gap height and known gap error. In this instance:

$$ \left.\frac{{\rm{d}}\dot{\gamma}_{\rm true}}{{\rm{d}}\dot{\gamma}_{\rm a}}\right|_{H} = \left(\frac{\partial\dot{\gamma}_{\rm true}}{{\partial}\Omega}\right)_{H}\frac{{\rm d}\Omega}{{\rm{d}}\dot{\gamma}_{\rm a}}=\left(\frac{H}{H + \epsilon}\right), $$
(33)

and, for measurements performed over a range of rotation rates at a fixed gap height, Eq. 28 becomes (cf. Eq. 7):

$$ \eta_{\rm true}(\dot{\gamma}_{\rm true}) = \eta_{\rm a}\left(1+\frac{\epsilon}{H}\right)\frac{1}{4}\left[3+\left.\frac{{\rm d} (\ln \mathcal{T}/2 \pi R^3)}{{\rm d}(\ln\dot{\gamma}_{\rm a})}\right|_{H}\right]. $$
(34)

It is therefore clear that, for shear-thinning fluids, slightly different results can be obtained depending on whether measurements are performed at constant gap (varying rotation rate) or constant rotation rate (and varying the shear rate by changing the gap). It is instructive to compare the magnitude of the leading order correction due to (a) the error in gap height ε and (b) the derivative of the logarithmic term due to a rate-dependent viscosity. At small gaps, \(H\sim50~\upmu{\rm m}\), \(\epsilon\sim30~\upmu{\rm m}\), and the correction provided by the gap correction term in Eq. 34 can be O(100%). On the other hand, the corrections associated with the shear-thinning term in square brackets are much smaller. At low apparent shear rates, a ratio of Eq. 32 or 34 with the linear form of Eq. 6 in the text shows that the results in Eqs. 32 and 34 differ by at most [3+(1+ε/H)−1]/4. In the case of an extremely shear-thinning fluid in which

$$ \frac{{\rm d} (\ln \mathcal{T}/2 \pi R^3)}{{\rm d}(\ln\dot{\gamma}_{\rm a})}\rightarrow0, $$

both Eqs. 32 and 34 approach the same limit and the additional correction to the viscosity is only 25%. Given that the majority of fluids do not shear thin this strongly, the additional error due to a shear-rate-dependent viscosity in many cases will be less than 10% of that due to gap error. Thus, we conclude that, in the majority of experiments, applying the gap error analysis alone will provide a good estimate of the shear-rate-dependent viscosity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipe, C.J., Majmudar, T.S. & McKinley, G.H. High shear rate viscometry. Rheol Acta 47, 621–642 (2008). https://doi.org/10.1007/s00397-008-0268-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0268-1

Keywords

Navigation