Skip to main content
Log in

Electrochemical decomposition of layer-by-layer thin films composed of TEMPO-modified poly(acrylic acid) and poly(ethyleneimine)

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The decomposition of layer-by-layer (LbL) thin films composed of 2,2,6,6-tetramethylpiperidine-1-oxyl free radical-appended poly(acrylic acid) (TEMPO-PAA) and poly(ethylenimine) (PEI) was studied by using a quartz crystal microbalance (QCM) and cyclic voltammetry. The electrode potential of the (PEI/TEMPO-PAA)4/PEI film-coated Au resonator was scanned from +0.2 to +0.8 V vs Ag/AgCl. The CV showed that the oxidation peak current decreased as the number of scans increased. The change in the resonance frequency of the QCM increased after electrolysis, indicating that the film was decomposed by electrolysis. The positive charges originating from the oxoammonium ions probably destabilized the (PEI/TEMPO-PAA)4/PEI film. Furthermore, the release of 5,10,15,20-tetraphenyl-21H,23H-porphine tetrasulfonic acid (TPPS) from TPPS-loaded (PEI/TEMPO-PAA)4/PEI-coated ITO electrodes was investigated. TPPS was released at electrode potentials greater than +0.6 V by the decomposition of the film. The results suggest that TEMPO-PAA/PEI LbL films are suitable for electrochemically controlled drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  2. Marchenko I, Yashchenok A, German S, Inozemtseva O, Dorin D, Bukreeva T, Möhwald H, Skirtach A (2010) Polyelectrolytes: influence on evaporative self-assembly of particles and assembly of multilayers with polymers, nanoparticles and carbon nanotubes. Polymer 2:690–708

    Article  CAS  Google Scholar 

  3. Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213–4219

    Article  CAS  Google Scholar 

  4. Tomita S, Sato K, Anzai J (2008) Layer-by-layer assembled thin films composed of carboxyl-terminated poly(amidoamine) dendrimers as a pH-sensitive nano-device. J Colloid Interface Sci 326:35–40

    Article  CAS  Google Scholar 

  5. Qi W, Duan L, Li J (2011) Fabrication of glucose-sensitive protein microcapsules and their applications. Soft Mat 7:1571–1576

    Article  CAS  Google Scholar 

  6. Yoshida K, Sato K, Anzai J (2010) Layer-by-layer polyelectrolyte films containing insulin for pH-triggered release. J Mater Chem 20:1546–1552

    Article  CAS  Google Scholar 

  7. Crouzier T, Boudou T, Picart C (2010) Polysaccharide-based polyelectrolyte multilayer. Curr Opin Colloid Interface Sci 15:417–426

    Article  CAS  Google Scholar 

  8. Suzuki I, Egawa Y, Mizukawa Y, Hoshi T, Anzai J (2002) Construction of positively-charged layered assemblies assisted by cyclodextrin complexation. Chem Commun 21:164–165

    Article  Google Scholar 

  9. Takahashi S, Sato K, Anzai J (2012) Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications. Anal Bioanal Chem 402:1749–1758

    Article  CAS  Google Scholar 

  10. Deshmukh PK, Ramani KP, Singgh SS, Tekade AR, Chatap VK, Patil GB, Bari SB (2013) Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Contr Release 166:294–306

    Article  CAS  Google Scholar 

  11. Sato K, Takahashi S, Anzai J (2012) Layer-by-layer thin films and microcapsules for biosensors and controlled release. Anal Sci 28:929–938

    Article  CAS  Google Scholar 

  12. Egawa Y, Seki T, Takahashi S, Anzai J (2011) Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater Sci Eng, C 31:1257–1264

    Article  CAS  Google Scholar 

  13. Toutianoush A, Tieke B (2002) Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes. Mater Sci Eng, C 22:135–139

    Article  Google Scholar 

  14. Sato K, Imoto Y, Sugama J, Seki S, Inoue H, Odagiri T, Hoshi T, Anzai J (2005) Sugar-induced disintegration of layer-by-layer assemblies composed of concanavalin A and glycogen. Langmuir 21:797–799

    Article  CAS  Google Scholar 

  15. Inoue H, Anzai J (2005) Stimuli-sensitive thin films prepared by a layer-by-layer deposition of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Langmuir 21:8354–8359

    Article  CAS  Google Scholar 

  16. Sukhishvili SA, Granick S (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–310

    Article  CAS  Google Scholar 

  17. Liu X, Zhang J, Lynn DM (2008) Polyelectrolyte multilayers fabricated from ‘charge-shifting’ anionic polymers: a new approach to controlled film disruption and the release of cationic agents from surfaces. Soft Mat 4:1688–1695

    Article  CAS  Google Scholar 

  18. Nolan CM, Serpe MJ, Lyon LA (2004) Thermally modulated insulin release from microgel thin films. Biomacromolecules 5:1940–1946

    Article  CAS  Google Scholar 

  19. Boulmedais F, Tang CS, Keller B, Vörös J (2006) Controlled electrodissolution of polyelectrolyte multilayers: a platform technology towards the surface-initiated delivery of drugs. Adv Func Mater 16:63–70

    Article  CAS  Google Scholar 

  20. Diéguez L, Darwish N, Graf N, Vörös J, Zambelli T (2009) Electrochemical tuning of the stability of PLL/DNA multilayers. Soft Mat 5:2415–2421

    Article  Google Scholar 

  21. Sato K, Kodama D, Naka Y, Anzai J (2006) Electrochemically induced disintegration of layer-by-layer-assembled thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Biomacromolecules 7:3302–3305

    Article  CAS  Google Scholar 

  22. Sato H, Takano Y, Sato K, Anzai J (2009) Electrochemically controlled release of α, β, γ, δ-tetrakis(4-N-methylpyridinyl)porphine from layer-by-layer thin films. J Colloid Inteface Sci 333:141–144

    Article  CAS  Google Scholar 

  23. Schmidt DJ, Hammond PT (2010) Electrochemically erasable hydrogen-bonded thin films. Chem Commun 46:7358–7360

    Article  CAS  Google Scholar 

  24. Schmidt DJ, Min Y, Hammond PT (2011) Mechanomutable and reversibly swellable polyelectrolyte multilayer thin films controlled by electrochemically induced pH gradients. Soft Mat 7:6637–6647

    Article  CAS  Google Scholar 

  25. Aytar BS, Prausnitz MR, Lynn DM (2012) Rapid release of plasmid DNA from surfaces coated with polyelectrolyte multilayers promoted by the application of electrochemical potentials. ACS Appl Mater Interfaces 4:2726–2734

    Article  CAS  Google Scholar 

  26. Song J, Jańczewski D, Ma Y, Hempenius M, Xu J, Vancso GJ (2013) Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films. J Mater Chem B 1:828–834

    Article  CAS  Google Scholar 

  27. Song J, Jańczewski D, Ma Y, van Ingen L, Sim CE, Goh Q, Xu J, Vancso GJ (2013) Electrochemically controlled release of molecular guests from redox responsive polymeric multilayers and devices. Eur Polym J 49:2477–2484

    Article  CAS  Google Scholar 

  28. Wood KC, Zacharia NS, Schmidt DJ, Wrightman SN, Andaya BJ, Hammond PT (2008) Electroactive controlled release thin films. Proc Natl Acad Sci U S A 105:2280–2285

    Article  CAS  Google Scholar 

  29. Grieshaber D, Vörös J, Zambelli T, Ball V, Schaaf P, Voegel JC, Boulmedais F (2008) Swelling and contraction of ferrocyanide-containing polyelectrolyte multilayers upon application of an electric potential. Langmuir 24:13668–13676

    Article  CAS  Google Scholar 

  30. Wang F, Liu X, Li G, Li D, Dong S (2009) Selective electrodissolution of inorganic ions/DNA multilayer film for tunable DNA release. J Mater Chem 19:286–291

    Article  CAS  Google Scholar 

  31. Mawad D, Molino PJ, Cambhir S, Locke JM, Officer DL, Wallace GC (2012) Electrically induced disassembly of electroactive multilayer films fabricated from water soluble polythiophenes. Adv Funct Mater 22:5020–5027

    Article  CAS  Google Scholar 

  32. Bobbitt JM, Flores MCL (1988) Organic nitrosonium salts as oxidants in organic chemistry. Hetrocycles 27:509–533

    Article  CAS  Google Scholar 

  33. Kubota J, Ido T, Kuroboshi M, Tanaka H, Uchida T (2006) Electrooxidation of alcohols in an N-oxyl-immobilized rigid network polymer particles/water disperse system. Tetrahedron 62:4769–4773

    Article  CAS  Google Scholar 

  34. Nakahara K, Oyaizu K, Nishida H (2011) Organic radical battery approaching practical use. Chem Lett 40:222–227

    Article  CAS  Google Scholar 

  35. Niu J, Shi F, Liu Z, Wang Z, Zhang X (2007) Reversible disulfide cross-linking in layer-by-layer films: preassembly enhanced loading and pH/reductant dually controllable release. Langmuir 23:6377–6384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Young Scientist B (Nos. 2279047 and 24790040) from the Japan Society for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Anzai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Aikawa, Y., Kudo, T. et al. Electrochemical decomposition of layer-by-layer thin films composed of TEMPO-modified poly(acrylic acid) and poly(ethyleneimine). Colloid Polym Sci 292, 771–776 (2014). https://doi.org/10.1007/s00396-014-3169-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3169-0

Keywords

Navigation