Skip to main content
Log in

Effect on LDL-cholesterol of a large dose of a dietary supplement with plant extracts in subjects with untreated moderate hypercholesterolaemia: a randomised, double-blind, placebo-controlled study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To determine the effect of 4 weeks of supplementation, then, withdrawal of a dietary supplement (DS) containing red yeast rice extract, policosanol and artichoke leaf extract at twice the recommended daily dose (6 tablets, 6-TAB) compared to the usual dose (3-TAB) or to a placebo (PLA), on blood lipid profiles and safety biomarkers.

Methods

Forty-five healthy subjects (15 per group), with untreated hypercholesterolaemia, were included in this randomised, double-blind, placebo-controlled clinical trial.

Results

After 4 weeks of supplementation, LDL-C was significantly lower in 6-TAB (−0.21 g/l; 95 % CI −0.38 to −0.03 g/l; p = 0.0217) and 3-TAB (−0.25 g/l; 95 % CI −0.42 to −0.07 g/l; p = 0.0071) compared to PLA, although no difference in LDL-cholesterol was observed between the two groups, while no effect was seen on triacylglycerol and HDL-cholesterol. Four weeks after the end of supplementation, no difference in LDL-C was seen between the PLA group and the DS-treated groups. The muscle breakdown biomarkers, as well as biomarkers of liver and renal function, were altered by neither dose of the DS. Acute application of the DS on permeabilised skeletal muscle fibres of rats did not induce deleterious effects on mitochondrial function.

Conclusions

Supplementation with twice the recommended dose of the DS was effective in reducing LDL-cholesterol and appeared safe, but according to the present results, no additional benefit could be achieved compared to the recommended dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALE:

Artichoke leaf extract

ALT:

Alanine transaminase

AST:

Aspartate transaminase

CK:

Creatine kinase

DS:

Dietary supplement

HDL-C:

HDL-cholesterol

LDH:

Lactate dehydrogenase

LDL-C:

LDL-cholesterol

PLA:

Placebo

RYR:

Red yeast rice

TAB:

Tablet

TC:

Total cholesterol

ULN:

Upper limit of normality

References

  1. Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32(14):1769–1818

    Article  Google Scholar 

  2. Smith SC Jr, Benjamin EJ, Bonow RO et al (2011) AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation 124(22):2458–2473

    Article  Google Scholar 

  3. Mancini GB, Baker S, Bergeron J et al (2011) Diagnosis, prevention, and management of statin adverse effects and intolerance: proceedings of a Canadian Working Group Consensus Conference. Can J Cardiol 27(5):635–662

    Article  Google Scholar 

  4. Liu J, Zhang J, Shi Y et al (2006) Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chin Med 1:4

    Article  Google Scholar 

  5. Lu Z, Kou W, Du B et al (2008) Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am J Cardiol 101(12):1689–1693

    Article  Google Scholar 

  6. Klimek M, Wang S, Ogunkanmi A (2009) Safety and efficacy of red yeast rice (Monascus purpureus) as an alternative therapy for hyperlipidemia. Pharm Ther 34(6):313–327

    Google Scholar 

  7. Wider B, Pittler MH, Thompson-Coon J et al (2009) Artichoke leaf extract for treating hypercholesterolaemia. Cochrane Database Syst Rev (4):CD003335

  8. Gouni-Berthold I, Berthold HK (2002) Policosanol: clinical pharmacology and therapeutic significance of a new lipid-lowering agent. Am Heart J 143(2):356–365

    Article  CAS  Google Scholar 

  9. Berthold HK, Unverdorben S, Degenhardt R et al (2006) Effect of policosanol on lipid levels among patients with hypercholesterolemia or combined hyperlipidemia: a randomized controlled trial. JAMA 295(19):2262–2269

    Article  CAS  Google Scholar 

  10. Ogier N, Amiot MJ, George S et al (2012) LDL-cholesterol-lowering effect of a dietary supplement with plant extracts in subjects with moderate hypercholesterolemia. Eur J Nutr [Epub ahead of print]

  11. Sirvent P, Mercier J, Lacampagne A (2008) New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol 8(3):333–338

    Article  CAS  Google Scholar 

  12. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  Google Scholar 

  13. Sirvent P, Bordenave S, Vermaelen M et al (2005) Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem Biophys Res Commun 338(3):1426–1434

    Article  CAS  Google Scholar 

  14. Saks VA, Veksler VI, Kuznetsov AV et al (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184(1–2):81–100

    Article  CAS  Google Scholar 

  15. Jiang FY, Sun LP, Yang J (2011) Effects of xuezhikang at different doses on patients suffering from acute coronary syndrome after percutaneous coronary intervention. Zhongguo Zhong Xi Yi Jie He Za Zhi 31(12):1607–1610 (In Chinese)

    Google Scholar 

  16. Pons P, Rodriguez M, Robaina C et al (1994) Effects of successive dose increases of policosanol on the lipid profile of patients with type II hypercholesterolaemia and tolerability to treatment. Int J Clin Pharmacol Res 14(1):27–33

    CAS  Google Scholar 

  17. Crouse JR 3rd, Lukacsko P, Niecestro R et al (2002) Dose response, safety, and efficacy of an extended-release formulation of lovastatin in adults with hypercholesterolemia. Am J Cardiol 89(2):226–229

    Article  CAS  Google Scholar 

  18. Hunninghake DB, Knopp RH, Schonfeld G et al (1990) Efficacy and safety of pravastatin in patients with primary hypercholesterolemia. I. A dose-response study. Atherosclerosis 85(1):81–89

    Article  CAS  Google Scholar 

  19. Jacotot B, Banga JD, Pfister P et al (1994) Efficacy of a low dose-range of fluvastatin (XU 62–320) in the treatment of primary hypercholesterolaemia. A dose-response study in 431 patients. The French-Dutch Fluvastatin Study Group. Br J Clin Pharmacol 38(3):257–263

    Article  CAS  Google Scholar 

  20. Saito Y, Goto Y, Dane A et al (2003) Randomized dose-response study of rosuvastatin in Japanese patients with hypercholesterolemia. J Atheroscler Thromb 10(6):329–336

    Article  CAS  Google Scholar 

  21. Heber D, Yip I, Ashley JM et al (1999) Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr 69(2):231–236

    CAS  Google Scholar 

  22. Englisch W, Beckers C, Unkauf M et al (2000) Efficacy of artichoke dry extract in patients with hyperlipoproteinemia. Arzneimittelforschung 50(3):260–265

    CAS  Google Scholar 

  23. Castano G, Fernandez L, Mas R et al (2002) Comparison of the efficacy, safety and tolerability of original policosanol versus other mixtures of higher aliphatic primary alcohols in patients with type II hypercholesterolemia. Int J Clin Pharmacol Res 22(2):55–66

    CAS  Google Scholar 

  24. Chen H, Ren JY, Xing Y et al (2009) Short-term withdrawal of simvastatin induces endothelial dysfunction in patients with coronary artery disease: a dose-response effect dependent on endothelial nitric oxide synthase. Int J Cardiol 131(3):313–320

    Article  Google Scholar 

  25. Tomaszewski M, Stepien KM, Tomaszewska J et al (2011) Statin-induced myopathies. Pharmacol Rep 63(4):859–866

    CAS  Google Scholar 

  26. Kaufmann P, Torok M, Zahno A et al (2006) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63(19–20):2415–2425

    Article  CAS  Google Scholar 

  27. Kwak HB, Thalacker-Mercer A, Anderson EJ et al (2012) Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes. Free Radical Biol Med 52(1):198–207

    Article  CAS  Google Scholar 

  28. Sirvent P, Fabre O, Bordenave S et al (2012) Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol Appl Pharmacol 259(2):263–268

    Article  CAS  Google Scholar 

  29. Bouitbir J, Charles AL, Rasseneur L et al (2011) Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress. J Appl Physiol 111(5):1477–1483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Laboratoire Lescuyer, a company commercialising the tested dietary supplement, financed this work. We would like to thank Wanda Lipski for language editing.

Conflict of interest

E.B., E.D., and S.L.P. are employees of the company Laboratoire Lescuyer. J.F.L. is the general director of the company. P.C., C.M., B.H. and M.C. are employed by Biofortis-Mérieux Nutrisciences. The companies Biofortis-Mérieux Nutrisciences and Laboratoire Lescuyer have carried out this trial as a joint venture. Y.Z. and J.M.B. have signed a consultancy agreement with Biofortis-Mérieux Nutrisciences. P.S. declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien L. Peltier.

Additional information

This trial has been registered at ClinicalTrials.gov as NCT01354340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrat, E., Zaïr, Y., Sirvent, P. et al. Effect on LDL-cholesterol of a large dose of a dietary supplement with plant extracts in subjects with untreated moderate hypercholesterolaemia: a randomised, double-blind, placebo-controlled study. Eur J Nutr 52, 1843–1852 (2013). https://doi.org/10.1007/s00394-012-0486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0486-2

Keywords

Navigation