Skip to main content
Log in

Food mineral composition and acid–base balance in preterm infants

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Due to a transient age-related low renal capacity for net acid excretion, preterm infants fed formula are at a considerable risk of spontaneously developing incipient late metabolic acidosis, clinically characterized by e.g., disturbed bone mineralization and impaired growth.

Aim of the study

From acid–base data in blood and urine under different diets of modified human milk or preterm formulas is attempted to explore the impact of food mineral (and protein) composition on renal regulation and systemic acid–base balance in preterm infants.

Patients and methods

Data were collected from 48 infants fed their own mother’s milk (28 native human milk, 20 enriched with fortifier) and 34 patients on formula (23 on a standard batch, 11 on a modified batch with reduced acid load). Intake of food was measured and acid–base data were determined in blood and timed-urine (8–12 h) samples.

Results

Differences in mineral composition of the diets led to considerable differences of daily “alkali-intake”, without significant effects on non-respiratory (base excess, BE) and respiratory (PCO2) acid–base data in the blood. In contrast, a highly significant proportionality between individual dietary alkali intake and daily renal base (Na+ + K+–Cl) excretion was observed (y = 0.32x−0.70, n = 80, r = 0.77, P < 0.0001), irrespective of the type of the diet.

Conclusion

Renal base saving mechanisms are normally effective in preterm infants to compensate for differences in dietary acid–base load. Generally, nutritional acid–base challenges can be judged much earlier and more safely by urinary than by blood acid–base analysis. Taking into account the age specific low capacity for renal NAE, the relatively high nutritional acid load of preterm standard formula should be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alpern RJ, Sakhaee K (1997) The clinical spectrum of chronic metabolic acidosis: homeostatic mechanisms produce significant morbidity. Am J Kidney Dis 29:291–302

    CAS  PubMed  Google Scholar 

  2. American Academy of Pediatrics (2004) Pediatric nutrition handbook, 5th ed. Grove village, IL

  3. Atkinson SA (1994) Calcium and phosphorus needs of premature infants. Nutrition 10:66–68

    CAS  PubMed  Google Scholar 

  4. Atkinson DE, Bourke E (1987) Metabolic aspects of the regulation of systemic pH. Am J Physiol 252:F947–F956

    CAS  PubMed  Google Scholar 

  5. Atkinson SA, Tsang RC (2005) Calcium, magnesium, phosphorus and vitamin D. In: Tsang RC, Lucas A, Uauy R, Koletzko B, Zlotkin S (eds) Nutrition of the preterm infant. Scientific basis and practical guidelines. Digital Educational Publishing Inc., Cincinnati, pp 45–80

    Google Scholar 

  6. Bartels H, Böhmer M, Heierli C (1972) Serum Kreatininbestimmung ohne Enteiweissen. Clin Chem Acta 37:193–197

    Article  CAS  Google Scholar 

  7. Carlson SE (2005) Feeding after discharge: growth, development and long-term effects. In: Tsang RC, Lucas A, Uauy R, Koletzko B, Zlotkin S (eds) Nutrition of the preterm infant. Scientific basis and practical guidelines. Digital Educational Publishing Inc., Cincinnati, pp 357–382

    Google Scholar 

  8. Demigné C, Bloch-Faure M, Picard N, et al. (2006) Mice chronically fed a westernized experimental diet as a model of obesity, metabolic syndrome and osteoporosis. Eur J Nutr 45:298–306

    Article  PubMed  CAS  Google Scholar 

  9. Dersjant-Li Y, Verstegen MWA, Jansman A, et al. (2002) Changes in oxygen content and acid-base balance in arterial and portal blood in response to the dietary electrolyte balance in pigs during a 9-h period after a meal. J Anim Sci 80:1233–1239

    CAS  PubMed  Google Scholar 

  10. Emmett M, Alpern RJ, Seldin DW (1992) Metabolic acidosis. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, Ltd., New York, pp 2759–2836

    Google Scholar 

  11. Kalhoff H (2003) Osteomalazie – (Rachitis) Prophylaxe bei Frühgeborenen. In: Bassler D, Forster J, Antes G (eds) Evidenzbasierte Pädiatrie. Thieme, Stuttgart, pp 1–17

    Google Scholar 

  12. Kalhoff H, Manz F (2001) Nutrition, acid-base status and growth in early childhood. Eur J Nutr 40:221–230

    Article  CAS  PubMed  Google Scholar 

  13. Kalhoff H, Manz F (2005) Estimation of dietary acid load of formulas for preterm infants. Eur Food Res Technol 220:96–100

    Article  CAS  Google Scholar 

  14. Kalhoff H, Diekmann L, Rudloff S, Manz F (2001) Renal excretion of calcium and phosphorus in premature infants with incipient late metabolic acidosis. J Pediatr Gastroent Nutr 32:565–569

    Article  Google Scholar 

  15. Kalhoff H, Manz F, Diekmann L, Kunz C, Stock GJ, Weisser F (1993) Decreased growth rate of low-birth-weight infants with prolonged maximum renal acid stimulation. Acta Paediatr 82:522–527

    CAS  PubMed  Google Scholar 

  16. Kalhoff H, Diekmann L, Hettrich B, Rudloff S, Stock GJ, Manz F (1997) Modified cow’s milk formula with reduced renal acid load preventing incipient late metabolic acidosis in premature infants. J Pediatr Gastroent Nutr 25:46–50

    Article  CAS  Google Scholar 

  17. Kim G-H, Han JS, Kim YS, et al. (1996) Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis 27:42–47

    CAS  PubMed  Google Scholar 

  18. Kiwull-Schöne H, Kalhoff H, Manz F, Kiwull P (2005) Food mineral composition and acid-base balance in rabbits. Eur J Nutr 44:499–508

    Article  PubMed  CAS  Google Scholar 

  19. Kuschel CA, Harding JE (2002) Multicomponent fortified human milk for promoting growth in preterm infants (Cochrane Review). In: The Cochrane Library, 1, 2002, Oxford, pp 357–382

  20. Lucas A, Fewtrell MS, Morley R, et al. (1996) Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am J Clin Nutr 64:142–151

    CAS  PubMed  Google Scholar 

  21. Lüthy C, Moser C, Oetliker O (1977) Dreistufige Säure-Basen-Titration im Urin. Med Lab 30:174–181

    Google Scholar 

  22. Macdonald HM, New SA, Fraser WD, et al. (2005) Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81:923–33

    CAS  PubMed  Google Scholar 

  23. Manz F, Kalhoff H, Remer T (1997) Renal acid excretion in early infancy. Pediatr Nephrol 11:231–243

    Article  CAS  PubMed  Google Scholar 

  24. Quigley R, Baum M (2004) Neonatal acid base balance and disturbances. Sem Perinat 2:97–102

    Article  Google Scholar 

  25. Remer T (2001) Influence of nutrition on acid-base balance – metabolic aspects. Eur J Nutr 40:214–220

    Article  CAS  PubMed  Google Scholar 

  26. Remer T, Manz F (1994) Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr 59:1356–1361

    CAS  PubMed  Google Scholar 

  27. Remer T, Manz F (1995) Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 95:791–797

    Article  CAS  PubMed  Google Scholar 

  28. Remer T, Van Eyll B, Tölle HG, Manz F (1990) Gehalte und chargenabhängige Schwankungen verschiedener Mineralstoffe in Frühgeborenen-Milchnahrungen sowie mögliche Effekte auf die renale Säurelast. Monatsschr Kinderheilkd 138:658–663

    CAS  PubMed  Google Scholar 

  29. Renner E (1982) Milch und Milchprodukte in der Ernährung des Menschen, Regensburg

  30. Rigo J (2005) Protein, amino acid and other nitrogen compounds. In: Tsang RC, Lucas A, Uauy R, Koletzko B, Zlotkin S (eds) Nutrition of the preterm infant. Scientific basis and practical guidelines. Digital Educational Publishing Inc., Cincinnati, pp 45–80

    Google Scholar 

  31. Runkel KH, Baak L (1972) Methods for the determination of metallic elements in micro-algae. Z analyt Chemie 260:284–288

    Article  CAS  Google Scholar 

  32. Schanler RJ (1996) Human milk fortification for premature infants. Am J Clin Nutr 64:249–250

    CAS  PubMed  Google Scholar 

  33. Schanler RJ (2001) The use of human milk for premature infants. Pediatr Clin North Am 48:207–220

    Article  CAS  PubMed  Google Scholar 

  34. Siggaard-Andersen O (1974) The acid-base status of the blood, 4th edition. Munksgaard, Copenhagen

    Google Scholar 

  35. Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess of buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl 107:123–128

    Article  CAS  PubMed  Google Scholar 

  36. van Slyke D, Palmer WW (1920) Studies in acidosis. The titration of organic acids in urine. J Biol Chem 41:567–585

    Google Scholar 

  37. Vagnoni DB, Oetzel GR (1998) Effects of dietary cation-anion difference on the acid-base status of dry cows. J Dairy Sci 81:1643–1652

    Article  CAS  PubMed  Google Scholar 

  38. Ziegler EE, O’Donnell A, Nelson SE, Fomon SJ (1976) Body composition of the reference fetus. Growth 40:329–341

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Kalhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalhoff, H., Manz, F., Kiwull, P. et al. Food mineral composition and acid–base balance in preterm infants. Eur J Nutr 46, 188–195 (2007). https://doi.org/10.1007/s00394-007-0646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-007-0646-y

Keywords

Navigation