Skip to main content

Advertisement

Log in

The Arctic freshwater cycle during a naturally and an anthropogenically induced warm climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Arctic freshwater cycle plays an important role in regulating regional and global climate. Current observations suggest that an intensification of the high-northern latitude hydrological cycle has caused a freshening of the Arctic and sub-Arctic seas, increasing the potential of weakening overturning strength in the Nordic seas, and reducing temperatures. It is not known if this freshening is a manifestation of the current anthropogenic warming and if the Arctic freshwater cycle has exhibited similar changes in the past, in particular as a response to naturally induced periods of warming, for example during the mid-Holocene hypsithermal. Thus, we have used an earth model of intermediate complexity, LOVECLIM, to investigate the response of the Arctic freshwater cycle, during two warm periods that evolved under different sets of forcings, the mid-Holocene and the twenty-first century. A combination of proxy reconstructions and modelling studies have shown these two periods to exhibit similar surface temperature anomalies, compared to the pre-industrial period, however, it has yet to be determined if the Arctic freshwater cycle and thus, the transport and redistribution of freshwater to the Arctic and the sub-Arctic seas, during these two warm periods, is comparable. Here we provide an overview that shows that the response of the Arctic freshwater cycle during the first half of the twenty-first century can be interpreted as an ‘extreme’ mid-Holocene hydrological cycle. Whilst for the remainder of the twenty-first century, the Arctic freshwater cycle and the majority of its components will likely transition into what can only be described as truly anthropogenic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94:14485–14498

    Article  Google Scholar 

  • Arzel O, Fichefet T, Goosse H, Dufresne JL (2008) Causes and impacts of changes in the Arctic freshwater budget during the twentieth and twenty-first centuries in an AOGCM. Clim Dyn 30:37–58. doi:10.1007/s00382-007-0258-5

    Article  Google Scholar 

  • Bennike O (2000) Palaeoecological studies of Holocene lake sediments from West Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 155:285–304

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Birks CJA, Koç N (2002) A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the Eastern Norwegian Sea. Boreas 31:323–344

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Loutre M, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum part 2: feedbacks with emphasis on the location of the ITCZ and mid-and high latitudes heat budget. Clim Past 3:279–296

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycles 16:1139. doi:10.1029/2001GB001662

    Article  Google Scholar 

  • Calvo E, Grimalt J, Jansen E (2002) High resolution U K37 sea surface temperature reconstruction in the Norwegian sea during the Holocene. Quat Sci Rev 21:1385–1394

    Article  Google Scholar 

  • Caseldine C, Geirsdóttir Á, Langdon P (2003) Efstadalsvatn—a multi-proxy study of a Holocene lacustrine sequence from NW Iceland. J Paleolimnol 30:55–73

    Article  Google Scholar 

  • Caseldine C, Langdon P, Holmes N (2006) Early Holocene climate variability and the timing and extent of the Holocene thermal maximum (HTM) in northern Iceland. Quat Sci Rev 25:2314–2331

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, NY, pp 848–940

    Google Scholar 

  • Christiansen HH, Bennike O, Böcher J, Elberling B, Humlum O, Jakobsen BH (2002) Holocene environmental reconstruction from deltaic deposits in northeast Greenland. J Quat Sci 17:145–160

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972

    Article  Google Scholar 

  • Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. Pages News 16:22–23

    Google Scholar 

  • Davis MB, Spear RW, Shane LCK (1980) Holocene climate of New England. Quat Res 14:240–250

    Article  Google Scholar 

  • Delaygue G, Bard E (2009) Solar forcing based on Be-10 in Antarctica ice over the past millennium and beyond. EGU 2009 general assembly. #EGU2009-6943

  • Deleersnijder E, Campin JM (1995) On the computation of the barotropic mode of a free-surface world ocean model. Ann Geophys 13:675–688

    Article  Google Scholar 

  • Deleersnijder E, Beckers JM, Campin JM, El Mohajir M, Fichefet T, Luyten P (1997) Some mathematical problems associated with the development and use of marine models. In: Diaz JI (ed) The mathematics of model for climatology and environment, NATO ASI Series. Springer-Verlag, Berlin, pp 39–86

    Chapter  Google Scholar 

  • Déry SJ, Wood EF (2005) Decreasing river discharge in northern Canada. Geophys Res Lett 32:L10401. doi:10.1029/2005GL022845

    Article  Google Scholar 

  • Déry SJ, Hernández-Henríquez MA, Burford JE, Wood EF (2009) Observational evidence of an intensifying hydrological cycle in northern Canada. Geophys Res Lett 36:L13402. doi:10.1029/2009GL038852

    Article  Google Scholar 

  • Dickson RR, Blindheim J (1984) On the abnormal hydrographic conditions in the European Arctic during the 1970s. ICES Rapports et Procès-Verbaux des Réunions 185:201–213

    Google Scholar 

  • Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modelling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34:L10707. doi:10.1029/2007GL029516

    Article  Google Scholar 

  • Duplessy JC, Ivanova E, Murdmaa I, Paterne M, Labeyrie L (2001) Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas 30:2–16

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1999) Modelling the influence of snow accumulation and snow–ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Goosse H, Campin JM, Fichefet T, Deleersnijder E (1997a) Sensitivity of a global ice-ocean model to the Bering Strait throughflow. Clim Dyn 13:349–358

    Article  Google Scholar 

  • Goosse H, Fichefet T, Campin JM (1997b) The effects of the water flow through the Canadian Archipelago in a global ice-ocean model. Geophys Res Let 24(12):1507–1510

    Article  Google Scholar 

  • Goosse H, Brovkin V, Fichefet T, Haarsma R, Huybrechts P, Jongma J, Mouchet A, Selten F, Barriat P-Y, Campin J-M, Deleersnijder E, Driesschaert E, Goelzer H, Janssens I, Loutre M-F, Morales Maqueda MA, Opsteegh T, Mathieu P–P, Munhoven G, Pettersson EJ, Renssen H, Roche DM, Schaeffer M, Tartinville B, Timmermann A, Weber SL (2010) Description of the earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev 3:603–633. doi:10.5194/gmd-3-603-2010

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi:10.1029/2005GL023209

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, Opsteegh JD, Lenderink G, Liu Q (1996) A coupled atmosphere ocean sea-ice model for climate predictability studies. KNMI, De Bilt, The Netherlands, p 31

    Google Scholar 

  • Häkkinen S, Proshutinsky A (2004) Freshwater content variability in the Arctic Ocean. J Geophys Res 109:C03051. doi:10.1029/2003JC001940

    Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232. doi:10.0007/s00382-003-0332-6

    Article  Google Scholar 

  • Holland MM, Finnis J, Serreze MC (2006) Simulated Arctic Ocean freshwater budgets in the twentieth and twenty-first centuries. J Clim 19:6221–6242

    Article  Google Scholar 

  • Holland MM, Finnis J, Barrett P, Serreze MC (2007) Projected changes in Arctic Ocean freshwater budgets. J Geophys Res 112:G04S55. doi:10.1029/2006JG000354

  • Hu FS, Ito E, Brubaker LB, Anderson PM (1998) Ostracode geochemical record of Holocene climatic change and implications for vegetational response in the northwestern Alaska range. Quat Res 49:86–95

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland ice sheet in the twenty-first century. Geophys Res Lett 36:L10707. doi:10.1029/2009GL037998

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, NY

    Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48:551–579

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? (2006). Geophys Res Lett 33:L17708. doi:10.1029/2006GL026815

    Article  Google Scholar 

  • Kaplan MR, Wolfe AP, Miller GH (2002) Holocene environmental variability in southern Greenland inferred from lake sediments. Quat Res 58:149–159

    Article  Google Scholar 

  • Karcher M, Gerdes R, Kauker F, Köberle C, Yashayaev I (2005) Arctic Ocean change heralds north Atlantic freshening. Geophys Res Lett 32:L21606. doi:10.1029/2005GL023861

    Article  Google Scholar 

  • Kattsov VM, Walsh JE (2000) Twentieth-century trends of Arctic precipitation from observational data and a climate model simulation. J Clim 13:1362–1370

    Article  Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180 W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Kerwin MW, Overpeck JT, Webb RS, Anderson KH (2004) Pollen-based summer temperature reconstructions for the eastern Canadian boreal forest, subarctic, and Arctic. Quat Sci Rev 23:1901–1924

    Article  Google Scholar 

  • Koç N, Jansen E (1992) A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climate changes. Paleoceanography 7:499–520

    Article  Google Scholar 

  • Koerner RM, Fisher DA (1990) A record of Holocene summer climate from a Canadian high-Arctic ice core. Nature 343:630–631

    Article  Google Scholar 

  • Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quat Res 54:284–294

    Article  Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Fredrick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533

    Article  Google Scholar 

  • Kwong JYT, Gan TY (1994) Northward migration of permafrost along the Mackenzie highway and climatic warming. Clim Change 26:399–419

    Article  Google Scholar 

  • Levac E, De Vernal A, Blake W Jr (2001) Sea-surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence. J Quat Sci 16:353–363

    Article  Google Scholar 

  • Ljungqvist KC (2011) The spatio-temporal pattern of the mid-Holocene thermal maximum. Geografie 116:91–110

    Google Scholar 

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Day RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289

    Article  Google Scholar 

  • Macdonald GM (2010) Some Holocene palaeoclimatic and palaeoenvironmental perspectives on Arctic/subarctic climate warming and the IPCC 4th assessment report. J Quat Sci 25:39–47

    Article  Google Scholar 

  • MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246

    Article  Google Scholar 

  • MacDonald GM, Velichko AA, Kremenetski CV, Borisova OK, Goleva AA, Andreev AA, Cwynar LC, Riding RT, Forman SL, Edwards TWD, Aravena R, Hammarlund D, Szeicz JM, Gattaulin VN (2000) Holocene treeline history and climate change across northern Eurasia. Quat Res 53:302–311

    Article  Google Scholar 

  • MacDonald GM, Kremenetski KV, Beilman DW (2008) Climate change and the northern Russian treeline zone. Philos T Roy Soc B 363(1501):2285–2299. doi:10.1098/rstb.2007.2200

    Article  Google Scholar 

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12:381–388

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an Increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554

    Article  Google Scholar 

  • Marchal O, Cacho I, Stocker TF, Grimalt JO, Cavo E, Martrat B, Shackleton N, Vautravers M, Cortijo E, Van Kreveld S, Anderson C, Koç N, Chapman M, Sbaffi L, Duplessy JC, Sarnthein M, Turon JL, Duprat J, Jansen E (2002) Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat Sci Rev 21:455–483

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, NY

    Google Scholar 

  • Miller JR, Russell GL (2000) Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys Res Lett 27:1183–1186

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2000) IPCC special report on emission scenarios. Cambridge University Press, UK

    Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (1988) Data announcement 88-MGG-02, digital relief of the surface of the earth. NOAA National Geophysical Data Center, Boulder, CO

    Google Scholar 

  • Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBilt: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A 50:348–367

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Pisaric MFJ, Holt C, Szeicz JM, Karst T, Smol JP (2003) Holocene treeline dynamics in the mountains of northeastern British Columbia, Canada, inferred from fossil pollen and stomata. Holocene 13:161–173

    Article  Google Scholar 

  • Prange M, Lohmann G (2003) Effects of mid-Holocene river runoff on the Arctic ocean/sea-ice system: a numerical model study. Holocene 13:335–342

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Noda A, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, NY

    Google Scholar 

  • Renssen H, Goosse H, Fichefet T, Brovkin V, Driesschaert E, Wolk F (2005) Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Clim Dyn 24:23–43

    Article  Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414. doi:10.1038/NGE0513

    Article  Google Scholar 

  • Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene thermal maximum. Quat Sci Rev 48:7–19. doi:10.1016/j.quascirev.2012.05.022

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990. doi:10.1126/science.1121381

    Article  Google Scholar 

  • Ritchie JC, Cwynar LC, Spear RW (1983) Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305:126–128

    Article  Google Scholar 

  • Roach AT, Aagaard K, Pease CH, Salo SA, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through Bering Strait. J Geophys Res 100:18443–18457

    Article  Google Scholar 

  • Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP) documentation of new cloud datasets. WMO/TD-No 737I, World Meteorological Organisation

  • Sarnthein M, van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32:447–461

    Article  Google Scholar 

  • Schauer U, Beszczynska-Möller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dicksopn RR (ed) Arctic-subarctic Ocean fluxes. Springer, New York, pp 65–85

    Chapter  Google Scholar 

  • Schlichtholz P, Houssais M-H (1999) An investigation of the dynamics of the East Greenland current in Fram Strait based on a simple analytical model. J Phys Oceanogr 29:2240–2265

    Article  Google Scholar 

  • Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi:10.5194/gmd-4-33-2011

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Serreze MC, Bromwich DH, Clark MP, Etringer AJ, Zhang T, Lammers R (2003) Large-scale hydro-climatology of the terrestrial Arctic drainage system. J Geophys Res 108. doi:10.1029/2001JD000919

  • Serreze MC, Barrett A, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res. doi:10.1029/2005JC003424

    Google Scholar 

  • Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32

    Article  Google Scholar 

  • Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4:1–9. doi:10.1088/1748-9326/4/4/045015

    Article  Google Scholar 

  • Smith RI (2002) Diatom-based Holocene paleoenvironmental records from continental sites on northeastern Ellesmere Island, High Arctic, Canada. J Paleolimnol 27:9–28

    Article  Google Scholar 

  • Steele M, Boyd T (1998) Retreat of the cold halocline layer in the Arctic Ocean. J Geophys Res 103:10419–10435

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea-ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703

    Article  Google Scholar 

  • Szeicz JM, MacDonald GM, Duk-Rodin A (1995) Late quaternary vegetation history of the central Mackenzie Mountains, Northwest Territories, Canada. Palaeogeogr, Palaeoclim, Palaeoecol 113:351–371. http://dx.doi.org/10.1016/0031-0182(95)00070-3

  • Tartinville B, Campin JM, Fichefet T, Goosse H (2001) Realistic representation of the surface freshwater flux in an ice-ocean general circulation model. Ocean Model 3:95–108

    Article  Google Scholar 

  • Toulany B, Garrett C (1984) Geostrophic control of fluctuating barotropic flow through straits. J Phys Oceanogr 14:649–655. doi:10.1175/1520-0485(1984)014<0649:GCOFBF>2.0.CO;2

    Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Wagner B, Melles M (2002) Holocene environmental history of western Ymer Ø, East Greenland, inferred from lake sediments. Quat Int 89:165–176

    Article  Google Scholar 

  • Wagner A, Lohmann G, Prange M (2011) Arctic river discharge trends since 7 ka BP. Glob Planet Change 79:48–60

    Article  Google Scholar 

  • Wang Y-M, Lean JL, Sheeley NR Jr (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538. doi:10.1086/429689

    Article  Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid-to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  • Woodgate RA, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32:L02602. doi:10.1029/2004GL021747

    Google Scholar 

  • Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsky D, Yang D, Ye H, Ling F, Chudinova S (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101. doi:10.1029/2004JD005642

    Article  Google Scholar 

  • Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2012) Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat Clim Change 2(8):1–5. doi:10.1038/nclimate1631

    Google Scholar 

Download references

Acknowledgments

This work was supported with funding from the ‘European Communities 7th Framework Programme FP7/2013, Marie Curie Actions, under Grant Agreement No. 23811: CASEITN’, and is greatly appreciated. H. G. is Senior Research Associate with the Fonds de la Recherche Scientifique (FRS—FNRS-Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frazer J. Davies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, F.J., Renssen, H. & Goosse, H. The Arctic freshwater cycle during a naturally and an anthropogenically induced warm climate. Clim Dyn 42, 2099–2112 (2014). https://doi.org/10.1007/s00382-013-1849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1849-y

Keywords

Navigation