Skip to main content

Advertisement

Log in

Role of dynamic vegetation in regional climate predictions over western Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study examines the role of vegetation dynamics in regional predictions of future climate change in western Africa using a dynamic vegetation model asynchronously coupled to a regional climate model. Two experiments, one for present day and one for future, are conducted with the linked regional climate-vegetation model, and the third with the regional climate model standing alone that predicts future climate based on present-day vegetation. These simulations are so designed in order to tease out the impact of structural vegetation feedback on simulated climate and hydrological processes. According to future predictions by the regional climate-vegetation model, increase in LAI is widespread, with significant shift in vegetation type. Over the Guinean Coast in 2084–2093, evergreen tree coverage decreases by 49% compared to 1984–1993, while drought deciduous tree coverage increases by 56%. Over the Sahel region in the same period, grass cover increases by 31%. Such vegetation changes are accompanied by a decrease of JJA rainfall by 2% over the Guinean Coast and an increase by 23% over the Sahel. This rather small decrease or large increase of precipitation is largely attributable to the role of vegetation feedback. Without the feedback effect from vegetation, the regional climate model would have predicted a 5% decrease of JJA rainfall in both the Guinean Coast and the Sahel as a result of the radiative and physiological effects of higher atmospheric CO2 concentration. These results demonstrate that climate- and CO2-induced changes in vegetation structure modify hydrological processes and climate at magnitudes comparable to or even higher than the radiative and physiological effects, thus evincing the importance of including vegetation feedback in future climate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2008) Simulation of West African monsoon using RegCM3 Part II: impacts of deforestation and desertification. Theor Appl Climatol 93:245–261. doi:10.1007/s00704-007-0333-1

    Article  Google Scholar 

  • Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ, Adedoyin A (2006) Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol 86:23–37. doi:10.1007/s00704-005-0202-8

    Article  Google Scholar 

  • Alo CA, Pontius RG Jr (2008) Identifying systematic land-cover transitions using remote sensing and GIS: the fate of forests inside and outside protected areas of Southwestern Ghana. Environ Plan B Plan Des 35(2):280–295

    Article  Google Scholar 

  • Alo CA, Wang G (2008) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophys Res 113:G01004. doi:10.1029/2007JG000528

    Article  Google Scholar 

  • Anthes R (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Wea Rev 105:270–286

    Article  Google Scholar 

  • Anyah RO, Semazzi FHM (2007) Variability of East African rainfall based on multiyear RegCM3 simulations. Int J Climatol 27:357–371

    Article  Google Scholar 

  • Arnell NW, Hudson DA, Jones RG (2003) Climate change scenarios from a regional climate model: estimating change in runoff in southern Africa. J Geophys Res 108(D16):4519. doi:10.1029/2002JD002782

    Article  Google Scholar 

  • Betts RA, Cox PM, Woodward FI (2000) Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature. Global Ecol Biogeogr 9:171–180

    Article  Google Scholar 

  • Bonan GB, Levis S (2006) Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J Clim 19:2290–2301

    Article  Google Scholar 

  • Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Chang Biol 9:1543–1566

    Article  Google Scholar 

  • Brovkin V, Claussen M, Petoukhov V, Ganopolski A (1998) On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. J Geophys Res 103(D24):31613–31624

    Article  Google Scholar 

  • Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. Glob Chang Biol 4:549–559

    Article  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur H-J (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 26(14):2037–2040

    Article  Google Scholar 

  • Cook KH, Vizy EK (2008) Effects of twenty-first century climate change on the Amazon rainforest. J Clim 21:542–560

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–Atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR Community Climate Model, NCAR Tech. Note/TN-387+STR, 72 pp

  • Diffenbaugh NS (2005) Atmosphere-land cover feedbacks alter the response of surface temperature to CO2 forcing in the western United States. Clim Dyn 24:237–251. doi:10.1007/s00382-004-0503-0

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2335

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev 121:764–787

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118:1561–1575

    Article  Google Scholar 

  • IPCC (2001) In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, New York

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, 996 pp

  • Jenkins GS, Adamou G, Fongang S (2002) The challenges of modeling climate variability and change in West Africa. Clim Change 52:263–286

    Article  Google Scholar 

  • Jenkins GS, Gaye AT, Sylla B (2005) Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys Res Lett 32:L22705. doi:10.1029/2005GL024225

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, p 40

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-4201STR, 152 pp

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a Dynamic Global Ecosystem Model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26:747–750

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (2000) Large scale vegetation feedbacks on a doubled CO2 climate. J Clim 13:1313–1325

    Article  Google Scholar 

  • Levis S, Bonan GB, Vertenstein M, Oleson KW (2004) The community land model’s dynamic vegetation model (CLM-DGVM): Technical description and user’s guide, NCAR Technical Note TN-459+IA, 50 pp

  • Li KY, Coe MT, Ramankutty N (2005) Investigation of hydrological variability in West Africa using land surface models. J Clim 18:3173–3188

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35:L08709. doi:10.1029/2007GL032849

    Article  Google Scholar 

  • Lucht W, Schaphoff S, Erbrecht T, Heyder U, Cramer W (2006) Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag 1:6. doi:10.1186/1750-0680-1-6

    Article  Google Scholar 

  • Martínez-Castro D, Porfirio da Rocha R, Bezanilla-Morlot A, Alvarez-Escuderol L, Reyes-Ferna′ndez JP, Silva-Vidal Y, Arritt RW (2006) Sensitivity studies of the RegCM3 simulation of summer precipitation, temperature and local wind field in the Caribbean Region. Theor Appl Cimatol 86:5–22. doi:10.1007/s00704-005-0201-9

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios of the Intergovernmental Panel on climate change. Cambridge University Press, New York, p 570

    Google Scholar 

  • New M, Hulme M, Jones PD (2000) Representing twentieth century space-time climate variability. Part 2: development of 1901-1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Oleson K, Dai Y, Bonan GB, Bosilovich M, Dickinson RE, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G-Y, Thornton P, Vertenstein M, Yang Z-L, Zeng X (2004) Technical Description of the Community Land Model (CLM), NCAR Technical Note TN-461+STR, 174 pp

  • Omotosho J, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14:209–225

    Article  Google Scholar 

  • Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. J Clim 22:114–132. doi:10.1175/2008JCLI2390.1

    Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594. doi:10.1029/2000JD900415

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soci 88(9):1395–1409

    Article  Google Scholar 

  • Patricola CM, Cook KH (2007) Dynamics of the West African monsoon under mid-Holocene precessional forcing: regional climate model simulations. J Clim 20:694–716

    Article  Google Scholar 

  • Patricola CM, Cook KH (2008) Atmosphere/vegetation feedbacks: a mechanism for abrupt climate change over northern Africa. J Geophys Res 113:D18102. doi:10.1029/2007JD009608

    Article  Google Scholar 

  • Ramankutty N (2004) Croplands in West Africa: a geographically explicit dataset for use in models. Earth Interactions 8:1–22

    Article  Google Scholar 

  • Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34:L09708. doi:10.1029/2007GL029695

    Article  Google Scholar 

  • Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC (2006) Terrestrial biosphere carbon storage under alternative climate projections. Clim Change. doi:10.1007/s10584-005-9002-5

  • Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. PNAS 103:13116–13120

    Article  Google Scholar 

  • Seth A, Rauscher SA, Camargo SJ, Qian J, Pal JS (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480. doi:10.1007/s00382-006-0191-z

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:101–185

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Wang G (2004) A conceptual modeling study on biosphere–atmosphere interactions and its implications for physically based climate models. J Clim 17:2572–2583

    Google Scholar 

  • Wang G, Eltahir EAB (2000) Ecosystem dynamics and the Sahel drought. Geophys Res Lett 27:795–798

    Article  Google Scholar 

  • Wang G, Eltahir EAB, Foley JA, Pollard D, Levis S (2004) Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere-biosphere model. Clim Dyn 22(6–7):625–637. doi:10.1007/s00382-004-0411-3

    Google Scholar 

  • Wang Y, Leung LR, McGregor JL, Lee D, Wang W, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82:1599–1628

    Article  Google Scholar 

  • Xue Y (1997) Biosphere feedback on regional climate in tropical north Africa. Q J R Meteorol Soc 123 B:1483–1515

    Article  Google Scholar 

  • Xue Y, Shukla J (1993) The influence of land surface properties on Sahel climate. Part I: desertification. J Clim 6:2232–2245

    Article  Google Scholar 

  • Xue Y, Vasic R, Janjic Z, Mesinger F, Mitchell KE (2007) Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB Regional Climate Model. J Clim 20:4172–4193

    Article  Google Scholar 

  • Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gary Strand of NCAR for making available to us the 6-hourly CCSM3.0 output from the IPCC AR4 simulations. We also thank Moetasim Ashfaq for his help in interfacing the CCSM3.0 output with RegCM3. We appreciate the thoughtful comments from the anonymous reviewers. This work is supported by funding from the National Science Foundation (NSF) under agreement ATM 0531485 and the University of Connecticut Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Aga Alo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alo, C.A., Wang, G. Role of dynamic vegetation in regional climate predictions over western Africa. Clim Dyn 35, 907–922 (2010). https://doi.org/10.1007/s00382-010-0744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0744-z

Keywords

Navigation