Skip to main content

Advertisement

Log in

Intra-annual link of spring and autumn precipitation over France

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In a previous study, an intra-annual relationship of observed precipitation, manifested by negative correlations between domain-averaged spring and autumn precipitation of the same year, was found in two domains covering France and Central Europe for the period 1972–1990 (Hirschi et al., J Geophys Res 112(D22109), 2007). Here, this link and its temporal evolution over France during the twentieth century is further investigated and related to the atmospheric circulation and North Atlantic/Mediterranean sea surface temperature (SST) patterns. Observational datasets of precipitation, mean sea level pressure (MSLP), atmospheric teleconnection patterns, and SST, as well as various global and regional climate model simulations are analyzed. The investigation of observed precipitation by means of a running correlation with a 30-year time window for the period 1901–present reveals a decreasing trend in the spring-to-autumn correlations, which become significantly negative in the second half of the twentieth century. These negative correlations are connected with similar spring-to-autumn correlations in observed MSLP, and with negatively correlated spring East Atlantic (EA) and autumn Scandinavian (SCA) teleconnection pattern indices. Maximum covariance analyses of SST with these atmospheric variables indicate that at least part of the identified spring-to-autumn link is mediated through SST, as spring precipitation and MSLP are connected with the same autumn SST pattern as are autumn precipitation, MSLP and the SCA pattern index. Except for ERA-40 driven regional climate models from the EU-FP6 project ENSEMBLES, the analyzed regional and global climate models, including Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations, do not capture this observed variability in precipitation. This is associated with the failure of most models in simulating the observed correlations between spring and autumn MSLP. While the causes for the identified relationship cannot be fully established its timing suggests a possible link with increased aerosol loading in the global dimming period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that there does not exist any significant correlation between autumn and next-year spring precipitation.

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19(22):5816–5842

    Article  Google Scholar 

  • Baines PG, Folland CK (2007) Evidence for a rapid global climate shift across the late 1960s. J Clim 20(12):2721–2744

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126

    Article  Google Scholar 

  • Casty C, Raible C, Stocker T, Wanner H, Luterbacher J (2007) A European pattern climatology 1766–2000. Clim Dyn 29(7):791–805

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81(Suppl 1):1–6

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16(9):661–676

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28(10):2077–2080

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34(L06707). doi:10.1029/2006GL029,068

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20119). doi:10.1029/2008JD010,201

  • Hirschi M, Seneviratne SI, Hagemann S, Schär C (2007) Analysis of seasonal terrestrial water storage variations in regional climate simulations over Europe. J Geophys Res 112(D22109). doi:10.1029/2006JD008,338

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679

    Article  Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36(3–4):301–326

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell J, Kushnir Y, Ottersen G, Visbeck M (ed) The North Atlantic Oscillation: climatic significance and environmental impact, no. 134 in Geophysical Monograph Series. American Geophysical Union, Washington, DC

    Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21(19):5145–5153

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22(12):1441–1453

    Article  Google Scholar 

  • Knutti R (2008) Why are climate models reproducing the observed global surface warming so well? Geophys Res Lett 35(L18704). doi:10.1029/2008GL034,932

  • Koster RD, Suarez MJ, Heiser M (2000) Variance and predictability of precipitation at seasonal-to-interannual timescales. J Hydrometeorol 1:26–46

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5(3):715–737

    Article  Google Scholar 

  • Massei N, Durand A, Deloffre J, Dupont JP, Valdes D, Laignel B (2007) Investigating possible links between the North Atlantic Oscillation and rainfall variability in northwestern France over the past 35 years. J Geophys Res 112(D09121). doi:10.1029/2005JD007,000

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Google Scholar 

  • Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J Geophys Res 112(D08214). doi:10.1029/2006JD007,794

  • Orlowsky B, Seneviratne SI (2009) Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J Clim (submitted)

  • Palmer TN, Doblas-Reyes RJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 89(4):459–470

    Article  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26(4):387–405

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14). doi:10.1029/2002JD002,670

  • Rodríguez-Fonseca B, de Castro M (2002) On the connection between winter anomalous precipitation in the Iberian Peninsula and North West Africa and the summer subtropical Atlantic sea surface temperature. Geophys Res Lett 29(18). doi:10.1029/2001GL014,421

  • Rodríguez-Fonseca B, Polo I, Serrano E, Castro M (2006) Evaluation of the North Atlantic SST forcing on the European and Northern African winter climate. Int J Climatol 26(2):179–191

    Article  Google Scholar 

  • Rodwell MJ, Folland CK (2002) Atlantic air–sea interaction and seasonal predictability. Q J R Meteorol Soc 128(583):1413–1443

    Article  Google Scholar 

  • Rudolf B, Hauschild H, Rueth W, Schneider U (1994) Terrestrial precipitation analysis: operational method and required density of point measurements. In: Desbois M, Desalmand F (eds) Global precipitations and climate change, NATO ASI series I, vol 26. Springer, Berlin, pp 173–186

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367(6465):723–726

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2008) Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J Clim 21(4):802–816

    Article  Google Scholar 

  • Seneviratne SI, Koster RD, Guo Z, Dirmeyer PA, Kowalczyk E, Lawrence D, Liu P, Lu CH, Mocko D, Oleson KW, Verseghy D (2006a) Soil moisture memory in AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J Hydrometeorol 7(5):1090–1112

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006b) Land–atmosphere coupling and climate change in Europe. Nature 443(7108):205–209

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2009) Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci Rev (submitted)

  • Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388(6642):563–567

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16(20):3296–3313

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309(5731):115–118

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907

    Article  Google Scholar 

  • Trenberth K, Paolino D (1980) The Northern Hemisphere sea level pressure data set: trends, errors, and discontinuities. Mon Weather Rev 108:855–872

    Article  Google Scholar 

  • Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20(1):9–17

    Article  Google Scholar 

  • Uppala S, Kållberg P, Simmons A, Andrae U, da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6(4):863–881

    Article  Google Scholar 

  • Vicente-Serrano SM, López-Moreno JI (2008) Nonstationary influence of the North Atlantic Oscillation on European precipitation. J Geophys Res 113(D20120). doi:10.1029/2008JD010,382

  • Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–382

    Article  Google Scholar 

  • Wibig J (1999) Precipitation in Europe in relation to circulation patterns at the 500 hPa level. Int J Climatol 19(3):253–269

    Article  Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23(6):679–692

    Article  Google Scholar 

  • Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34(L04702). doi:10.1029/2006GL028,031

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Zorita E, Kharin V, von Storch H (1992) The atmospheric circulation and sea surface temperature in the North Atlantic area in winter: their interaction and relevance for Iberian precipitation. J Clim 5(10):1097–1108

    Article  Google Scholar 

  • Zveryaev II (2004) Seasonality in precipitation variability over Europe. J Geophys Res 109(D05103). doi:10.1029/2003JD003,668

  • Zveryaev II (2006) Seasonally varying modes in long-term variability of European precipitation during the 20th century. J Geophys Res 111(D21116). doi:10.1029/2005JD006,821

  • Zveryaev II (2008) Interdecadal changes in the links between European precipitation and atmospheric circulation during boreal spring and fall. Tellus A 61(1): 50–56

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the use of the datasets from the Climate Prediction Center, the CRU, the ECMWF, the GPCC, the Hadley Centre, the Data Support Section at the NCAR, NOAA-ESRL Physical Sciences Division, the E-Obs dataset from the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.org) and the data providers in the ECA&D project (http://eca.knmi.nl). Moreover, we would like to thank the PRUDENCE and ENSEMBLES communities, Martin Wild (for the PRUDENCE-SST ECHAM run), Sylvaine Ferrachat (for the ECHAM-MLO experiments) for providing model data. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We also thank Stefan Brönnimann, Thierry Corti, Ulrike Lohmann, Boris Orlowsky, Reinhard Schiemann and Martin Wild for helpful discussions. Christoph Frei is gratefully acknowledged for the provision of the R-package pcaXcca used for the MCA. Moreover, we thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hirschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschi, M., Seneviratne, S.I. Intra-annual link of spring and autumn precipitation over France. Clim Dyn 35, 1207–1218 (2010). https://doi.org/10.1007/s00382-009-0734-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0734-1

Keywords

Navigation