Skip to main content

Advertisement

Log in

The role of shallow convection in the water and energy cycles of the atmosphere

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Canadian Centre for Climate Modelling and Analysis atmospheric general circulation model (AGCM4) is used to study the role of shallow convection in the hydrologic and energy cycles of the atmosphere. Sensitivity tests with AGCM4 show a marked effect of the parameterization of shallow convection in the model. In particular, including the parameterization of shallow convection produces considerably enhanced vertical mixing and decreased stratiform cloud amounts in the lower subtropical atmosphere over the oceans. The differences in simulated stratiform cloud amounts are associated with a change in the globally averaged outgoing shortwave radiative flux at the top of the atmosphere of about 11 W m−2. Additionally, precipitation rates are considerably reduced for stratiform clouds and enhanced for convective clouds in the subtropics, if the parameterization of shallow convection is included in the model. Additional tests show that the simulated responses in cloud amounts and precipitation to the treatment of shallow convection are robust. Additional simulations with modified closures for deep convection and other changes to the treatment of convection in the model still lead to similar responses of the model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdella K, McFarlane N (1996) Parameterization of the surface-layer exchange coefficients for atmospheric models. Bound Layer Meteorol 80:223–248

    Google Scholar 

  • Albrecht BA (1981) Parameterization of trade-cumulus cloud amounts. J Atmos Sci 38:97–105

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Barker HW (1996) A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds Part I: Methodology and homogeneous biases. J Atmos Sci 53:2298–2303

    Google Scholar 

  • Barkstrom BR, Smith GL (1986) The earth radiation budget experiment: science and implementation. Rev Geophys 24:379–390

    Google Scholar 

  • Betts AK, Ridgway W (1988) Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific. J Atmos Sci 45:522–536

    Article  Google Scholar 

  • Boer GJ (1995) A hybrid moisture variable suitable for spectral GCMs. Research activities in atmospheric and oceanic modelling. Report No. 21, WMO/TD-No. 665, World Meteorological Organization, Geneva

  • Boer GJ, Yu B (2003) Climate sensitivity and climate state. Clim Dyn. 21:167–176

    Article  Google Scholar 

  • Bretherton CS (2003) Climate Process Team (CPT) on low-latitude cloud feedbacks on climate sensitivity. Project summary, University of Washington, p 15

  • Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz JC, Khairoutdinov M, Lewellen DC, Lock AP, MacVean MK, Moeng CH, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J R Meteor Soc 128:1075–1093

    Article  Google Scholar 

  • Ciesielski PE, Schubert WH, Johnson RH (1999) Large-scale heat and moisture budgets over the ASTEX region. J Atmos Sci 56:3241–3261

    Article  Google Scholar 

  • Dobbie JS, Li J, Chýlek P (1999) Two and four stream optical properties for water clouds and solar wavelengths. J Geophys Res 104:2067–2079

    Article  Google Scholar 

  • Emanuel KA (1994) Atmospheric convection. Oxford University Press, New York, p 580

    Google Scholar 

  • Grant ALM (2001) Cloud-base fluxes in the cumulus-capped boundary layer. Q J R Meteor Soc 127:407–421

    Article  Google Scholar 

  • Gregory D (1997) Sensitivity of general circulation model performance to convective parameterization. In: Smith RK (ed) The physics and parameterization of moist atmospheric convection. Kluwer, Dordrecht, pp 463–482

    Google Scholar 

  • Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J Geophys Res 99:5551–5568

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    Article  Google Scholar 

  • Holland JZ, Rasmusson EM (1973) Measurements of atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon Wea Rev 101:44–55

    Article  Google Scholar 

  • Johnson RH, Lin X (1997) Episodic trade wind regimes over the western Pacific warm pool. J Atmos Sci 54:2020–2034

    Article  Google Scholar 

  • Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418

    Article  Google Scholar 

  • Khairoutdinov M, Kogan Y (2000) A new cloud physics parameterization in a large-eddy simulation of marine stratocumulus. Mon Wea Rev 128:229–243

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR technical note NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, Colorado, 152 pp

  • Laprise R, Girard E (1990) A spectral general circulation model using a piecewise-constant finite element representation on a hybrid vertical coordinate system. J Clim 3:32–52

    Article  Google Scholar 

  • Li J, Barker HW (2002) Accounting for unresolved clouds in a 1D infrared radiative transfer model Part II: horizontal variability of cloud water path. J Atmos Sci 59:3325–3342

    Google Scholar 

  • Lindner TH, Li J (2000) Parameterization of the optical properties for water clouds in the infrared. J Clim 13:1797–1805

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12:557–572

    Article  Google Scholar 

  • Lohmann U, von Salzen K, McFarlane N, Leighton HG, Feichter J (1999) Tropospheric sulphur cycle in the Canadian general circulation model. J Geophys Res 104:26833–26858

    Google Scholar 

  • McCaa JR, Bretherton CS (2004) A new parameterization of shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers Part II: Regional simulations of marine boundary layer clouds. Mon Wea Rev 132:883–896

    Article  Google Scholar 

  • McFarlane NA, Boer GJ, Blanchet J-P, Lazare M (1992) The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J Clim 5:1013–1044

    Article  Google Scholar 

  • Menon S, Del Genio AD, Koch D, Tselioudis G (2002) GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. J Atmos Sci 59:692–713

    Article  Google Scholar 

  • Merryfield WJ, McFarlane N, Lazare M (2003) A generalized hybrid transformation for tracer advection. WGNE Blue Book, WMO, pp 3:13–3:14

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic regularity in turbulent mixing in the surface layer of atmosphere. Akad Nauk SSSR Trud Geofiz Inst 24:163–187

    Google Scholar 

  • Nitta T, Esbensen S (1974) Heat and moisture budget analyses using BOMEX data. Mon Wea Rev 102:17–28

    Article  Google Scholar 

  • Norris JR (1998a) Low cloud type over the ocean from surface observations Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Clim 11:369–382

    Article  Google Scholar 

  • Norris JR (1998b) Low cloud type over the ocean from surface observations. Part II: geographical and seasonal variation. J Clim 11:383–403

    Article  Google Scholar 

  • Ogura Y, Cho HR (1973) Diagnostic determination of cumulus cloud populations from observed large-scale variables. J Atmos Sci 30:1276–1286

    Article  Google Scholar 

  • Raga GB, Jensen JB, Baker MB (1990) Characteristics of cumulus band clouds off the coast of Hawaii. J Atmos Sci 47:338–355

    Article  Google Scholar 

  • Rasmusson EM, Mo KC (1996) Large-scale atmospheric moisture cycling as evaluated from NMC global analysis and forecast products. J Clim 9:3276–3297

    Article  Google Scholar 

  • Riehl H, Malkus JS (1957) On the heat balance and maintenance of circulation in the trades. Q J R Meteor Soc 83:21–29

    Article  Google Scholar 

  • Riehl H, Yeh TC, Malkus JS, LaSeur NE (1951) The northeast trade of the Pacific Ocean. Q J R Meteor Soc 77:598–626

    Article  Google Scholar 

  • Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International Satellite Cloud Climatology Project (ISCCP). Documentation of new cloud datasets. WMO/TD-No. 737, World Meteorological Organization, 115 pp

  • von Salzen K, McFarlane NA (2002) Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J Atmos Sci 59:1405–1429

    Article  Google Scholar 

  • von Salzen K, Leighton HG, Ariya PA, Barrie LA, Gong SL, Blanchet J-P, Spacek L, Lohmann U, Kleinman LI (2000) Sensitivity of sulphate aerosol size distributions and CCN concentrations over North America to SO x emissions and H2O2 concentrations. J Geophys Res 105:9741–9765

    Article  Google Scholar 

  • Scinocca JF, McFarlane NA (2004) The variability of modeled tropical precipitation. J Atmos Sci 61:1993–2015

    Article  Google Scholar 

  • Siebesma AP, Cuijpers WM (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 52:650–666

    Article  Google Scholar 

  • Siebesma AP, Jakob C Lenderink G et al (2004) Cloud representation in general-circulation models over the northern Pacific Ocean: a EUROCS intercomparison study. Q J R Meteor Soc 130:3245–3267

    Article  Google Scholar 

  • da Silva A, Young CC, Levitus S (1994) Atlas of surface marine data 1994 Vol. 1: algorithms and procedures. NOAA atlas NESDIS 6, US Department of Commerce, Washington, DC, 83 pp

  • Simpson J (1992) Global circulation and tropical cloud activity. In: Theon JS, Matsuno T, Sakata T, Fugono N (eds) The global role of tropical rainfall. A. Deepak Publishing, Hampton, pp 77–92

    Google Scholar 

  • Slingo JM (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteor Soc 113:899–927

    Article  Google Scholar 

  • Stevens B, Ackerman AS, Albrecht BA, Brown AR, Chlond A, Cuxart J, Duynkerke PG, Lewellen DC, Macvean MK, Neggers RAJ, Sanchez E, Siebesma AP, Stevens DE (2001) Simulation of trade wind cumuli under a strong inversion. J Atmos Sci 58:1870–1891

    Article  Google Scholar 

  • Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Report No. 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, 25 pp

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800

    Article  Google Scholar 

  • Tiedtke M, Heckley WA, Slingo JM (1988) Tropical forecasting at ECMWF: The influence of physical parameterization on the mean structure of forecasts and analyses. Q J R Meteor Soc 114:639–664

    Article  Google Scholar 

  • Verseghy DL, McFarlane NA, Lazare M (1993) A Canadian land surface scheme for GCMs: II Vegetation model and coupled runs. Int J Climatol 13:347–370

    Article  Google Scholar 

  • Xie PP, Arkin PA (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie S, Xu K-M, Cederwall RT, Bechtold P, Del Genio AD, Klein SA, Cripe DG, Ghan SJ, Gregory D, Iacobellis SF, Krueger SK, Lohmann U, Pech JC, Randall DA, Rotstayn LD, Somerville RCJ, Sud YC, von Salzen K, Walker GK, Wolf A, Yio JJ, Zhang GJ, Zhang M (2002) Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Q J R Meteor Soc 128:1095–1136

    Article  Google Scholar 

  • Xu K-M, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102

    Article  Google Scholar 

  • Yanai M, Esbensen S, Cho JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC-GCM. Atmos Ocean 3:407–446

    Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers for their helpful comments which helped us to improve the manuscript. We are also grateful to our colleagues George Boer, Jiangnan Li, William Merryfield, John Scinocca, Richard Harvey, and Bernard Miville for discussions of the results and contributions to model development and model diagnostics. This study has been funded by the Meteorological Service of Canada with additional support from the NSERC-CFCAS project Modelling of Clouds for Climate (MOC2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut von Salzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Salzen, K., McFarlane, N.A. & Lazare, M. The role of shallow convection in the water and energy cycles of the atmosphere. Clim Dyn 25, 671–688 (2005). https://doi.org/10.1007/s00382-005-0051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0051-2

Keywords

Navigation