Skip to main content
Log in

Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Quantitative genetics have not been used in vision studies because of the difficulty of objectively measuring large numbers of individuals. Here, we examine the effectiveness of a molecular technique, real-time PCR, as an inference of visual components in the bluefin killifish, Lucania goodei, to determine whether there is population variation in opsin expression. Previous work has shown that spring animals possess a higher frequency of UV and violet cones and a lower frequency of yellow and red cones than swamp animals. Here, we found a good qualitative match between the population differences in opsin expression and those found previously in cone frequency. Spring animals expressed higher amounts of SWS1 and SWS2B opsins (which correspond to UV and violet photopigments) and lower amounts of RH2 and LWS opsins (which correspond to yellow and red photopigments) than swamp animals. The counterintuitive pattern between color pattern, lighting environment, and vision remains. Males with blue anal fins are more abundant in swamps where animals express fewer SWS1 and SWS2B opsins and where transmission of UV/blue wavelengths is low. Understanding this system requires quantitative genetic studies. Real-time PCR is an effective tool for studies requiring inferences of visual physiology in large numbers of individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a

Similar content being viewed by others

Abbreviations

ERG:

electroretinogram

MSP:

microspectrophotometry

References

  • Bennett ATD, Cuthill IC, Norris KJ (1994) Sexual selection and the mismeasure of color. Am Nat 144:848–860

    Article  Google Scholar 

  • Bridges CDB (1972) The rhodopsin-porphyrops in visual system. In: Dartnall HJA (ed) Handbook of sensory physiology, VII/I. Springer, Berlin Heidelberg New York, pp 417–480

  • Boughman JW (2001) Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411:944–947

    Article  CAS  PubMed  Google Scholar 

  • Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18:1540–1550

    CAS  PubMed  Google Scholar 

  • Chen D-M, Christianson JS, Sapp RJ, Stark WS (1992) Visual receptor cycle in normal and period mutant Drosophila: microspectrophotometry, electrophysiology, and ultrastructural morphometry. Vis Neurosci 9:125–135

    CAS  PubMed  Google Scholar 

  • Chiu JF, Mack AF, Fernald RD (1995) Daily rhythm of cell-proliferation in the teleost retina. Brain Res 673:119–125

    CAS  PubMed  Google Scholar 

  • Cronin TW, Caldwell RL (2002) Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. II. Filter pigments. J Comp Physiol A 188:187–197

    Google Scholar 

  • Cronin TW, Caldwell RL, Marshall J (2001) Sensory adaptation—tunable colour vision in a mantis shrimp. Nature 411:547–548

    CAS  PubMed  Google Scholar 

  • Cronin TW, Caldwell RL, Erdmann MV (2002) Tuning of photoreceptor function in mantis shrimp species occupying a range of depths. I. Visual pigments. J Comp Physiol A 188:179–186

    Google Scholar 

  • Cummings ME, Partridge JC (2001) Visual pigments and optical habitats of surfperch (Embiotocidae) in the California kelp forest. J Comp Physiol A 187:875–889

    Google Scholar 

  • Endler JA (1990) On the measurement of classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:505–523

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139: S125–S153

    Article  Google Scholar 

  • Endler JA (1993) Some general-comments on the evolution and design of animal communication systems. Philos Trans R Soc London Ser B 340:215–225

    CAS  Google Scholar 

  • Endler JA, Basolo Al (1998) Sensory ecology, receiver biases and sexual selection. TREE 13:415–420

    Article  Google Scholar 

  • Endler JA, Houde AE (1995) Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution 49:356–368

    Google Scholar 

  • Endler JA, Basolo A, Glowacki S, Zerr J (2001) Variation in response to artificial selection for light sensitivity in guppies (Poecilia reticulata). Am Nat 158:36–48

    Article  Google Scholar 

  • Falconer DS, MacKay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, UK

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

  • Flamarique IN, Harosi FI (2000) Photoreceptors, visual pigments, and ellipsosomes in the killifish, Fundulus heteroclitus: a microspectrophotometric and histological study. Vis Neurosci 17:403–420

    Article  CAS  PubMed  Google Scholar 

  • Fleishman LJ, Bowman M, Saunders D, Millwer WE, Rury MJ, Loew ER (1997) The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. J Comp Physiol A 181:446–460

    Google Scholar 

  • Foster NR (1967) Comparative studies on the biology of killifishes (Pisces: Cyprinodontidae). PhD Dissertation, Cornell University, Ithaca

  • Fuller RC (2001) Patterns in male breeding behaviors in the bluefin killifish, Lucania goodei: a field study (Cyprinodontiformes: Fundulidae). Copeia 2001:823–828

    Google Scholar 

  • Fuller RC (2002) Lighting environment predicts relative abundance of male colour morphs in bluefin killifish (Lucania goodei) populations. Proc R Soc London Ser B 269:1457–1465

    Article  Google Scholar 

  • Fuller RC, Fleishman LJ, Leal M, Travis J, Loew E (2003) Intraspecific variation in ultraviolet cone production and visual sensitivity in the bluefin killifish, Lucania goodei. J Comp Physiol A 189:609–616

    Article  CAS  Google Scholar 

  • Garamszegi LZ, Møller AP, Erritzøe J (2002) Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc R Soc London Ser B 269:961–967

    Article  Google Scholar 

  • Hisatomi O, Kayada S, Aoki Y, Iwasa Y, Tokunaga F (1994) Phylogenetic relationships among vertebrate visual pigments. Vision Res 34:3097–3102

    Article  CAS  PubMed  Google Scholar 

  • Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK (1996) Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res 36:1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Hunt DM, Wilkle SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Neitz J, Krough K (1996) Electroretinogram flicker photometry and its applications. J Opt Soc Am A 13:641–648

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M (1982) Sexual selection and the evolution of female choice. Evolution 36:1–12

    Google Scholar 

  • Kokko H, Brooks R, McNamara JM, Houston AI (2002) The sexual selection continuum. Proc R Soc London Ser B 269:1331–1340

    Article  Google Scholar 

  • Kröger RHH, Bowmaker JK, Wagner HJ (1999) Morphological changes in the retina of Aequidens pulcher (Cichlidae) after rearing in monochromatic light. Vision Res 39:2441–2448

    Article  PubMed  Google Scholar 

  • Kröger RHH, Braun SC, Wagner HJ (2001) Rearing in different photic environments and chromatic environments modifies spectral responses of cone horizontal cells in adult fish retina. Vis Neurosci 18:857–864

    PubMed  Google Scholar 

  • Kröger RHH, Knoblauch B, Wagner HJ (2003) Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J Exp Biol 206 1643–1648

    Google Scholar 

  • Lande R (1981) Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci USA 78:3721–3725

    Google Scholar 

  • Leal M, Fleishman LJ (2002) Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species. Proc R Soc London Ser B 269:351–359

    Article  Google Scholar 

  • Loew ER, Dartnall HJA (1976) Vitamin A1/A2-based visual pigment mixtures in the cones of the rudd. Vision Res 16:891–896

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA

  • Lythgoe JN (1984) Visual pigments and environmental light. Vision Res 24:1539–1550

    CAS  PubMed  Google Scholar 

  • Lythgoe JN, Muntz WRA, Partridge JC, Shand J, Williams D.McB (1994) The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol A 174:461–467

    Google Scholar 

  • Macias Garcia C, Perera TF de (2002) Ultraviolet-based female preferences in a viviparous fish. Behav Ecol Sociobiol 52:1–6

    Article  Google Scholar 

  • Martin GR, Prince PA (2001) Visual fields and foraging in procellariiform seabirds: sensory aspects of dietary segregation. Brain Behav Evol 57:33–38

    Article  CAS  PubMed  Google Scholar 

  • McDonald CG, Hawryshyn CW (1995) Intraspecific variation of spectral sensitivity in threespine stickleback (Gasterosteus aculeatus) from different photic regimes. J Comp Physiol A 176:255–260

    Google Scholar 

  • Meer HJ van der, Bowmaker JK (1995) Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav Evol 45:232–240

    PubMed  Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) The visual system in vertebrates. Springer, New York, pp 193–274

  • Page LM, Burr BM (1991) Freshwater fishes: North America North of Mexico. Houghton Mifflin, Boston

    Google Scholar 

  • Partridge JC, Cummings ME (1999) Adaptations of visual pigments to the aquatic environment. In: Archer SN, Djamgoz MBA, Loew ER, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 251–283

  • Penn JS, Williams TP (1986) Photostasis: regulation of daily photon-catch by rat retinas in response to various cyclic illuminances. Exp Eye Res 43:915–928

    CAS  PubMed  Google Scholar 

  • Reckel F, Melzer RR (2003) Regional variations in the outer retina of Atherinomorpha (Beloniformes, Atheriniformes, Cyprinodontiformes: Teleostei): photoreceptors, cone patterns, and cone densities. J Morphol 257:270–288

    Article  PubMed  Google Scholar 

  • Regan BC, Julliot C, Simmen B, Vienot F, Charles-Dominique P, Mollon JD (2001) Fruits, foliage, and the evolution of primate colour vision. Phil Trans R Soc London Ser B 356:229–283

    Article  CAS  Google Scholar 

  • Reznick DA, Travis J (1996) The empirical study of adaptation in natural populations. In: Rose MR, Lauder GV (eds) Adaptation. Academic Press, San Diego, CA, pp 243–289

  • Rodd HF, Hughes GF Grether, Baril CT (2002) A possible non-sexual origin of mate preference: are male guppies mimicking fruit? Proc R Soc London Ser B 269:475–481

    Article  Google Scholar 

  • Ryan MJ, Keddy-Hector A (1992) Directional patterns of female mate choice and the role of sensory biases. Am Nat 139: s4–s35

    Article  Google Scholar 

  • Schaerer S, Neumeyer C (1996) Motion detection in goldfish investigated with the optomotor response is “color blind”. Vision Res 36:4025–4034

    Article  CAS  PubMed  Google Scholar 

  • Seehausen O, Alphen JJM van, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New York

  • Thorpe A, Douglas RH (1993) Spectral transmission and short-wave absorbing pigments in the fish lens. 2. Effects of age. Vision Res 33:301–307

    CAS  PubMed  Google Scholar 

  • Travis J, Reznick DN (1998) Experimental approaches to the study of evolution. In: Resitarits WJ, Bernardo J (eds) Issues and perspectives in experimental ecology. Oxford University Press, New York, pp 310–352

  • Vihtelic TS, Doro CJ, Hyde DR (1999) Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Vis Neurosci 16:571–585

    CAS  PubMed  Google Scholar 

  • Yokoyama S (1997) Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. Annu Rev Genet 31:315–336

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama S, Yokoyama R (1996) Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annu Rev Ecol Syst 27:543–567

    Google Scholar 

  • Yokoyama S, Zhang H, Radlwimmer FB, Blow NS (1999) Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci USA 96:6279–6284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nathan Blow and Shozo Yokoyama for graciously sharing opsin sequence data with us. Ana deCavarallo, Gwen Drake, and Ann Morris provided invaluable assistance at multiple stages throughout this project. This project was supported by a National Science Foundation dissertation improvement grant to J. Travis and R.C. Fuller (DEB 00-73896), a National Science Foundation grant to J. Travis (DEB 99-03925), a National Institutes of Health grant to J.M. Fadool (EY13020) and a National Science Foundation grant to K. Carleton (IBN 0131285). R.C. Fuller was supported by a University Fellowship from Florida State University. This work was approved by the Animal Care and Use Committee at Florida State University (no. 0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Fuller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, R.C., Carleton, K.L., Fadool, J.M. et al. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A 190, 147–154 (2004). https://doi.org/10.1007/s00359-003-0478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0478-z

Keywords

Navigation