Skip to main content
Log in

Characterization of waveguide loss using distributed Bragg reflectors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose and demonstrate a method to characterize waveguide loss using the spectral response of combinations of distributed Bragg reflectors. The method is independent of coupling efficiency and waveguide dispersion and does not require the introduction of bending loss into the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Marcuse, Bell Sys. Tech. J. 48, 3187–3215 (1969)

    Article  Google Scholar 

  2. F.P. Payne, J.P.R. Lacey, Opt. Quant. Electron. 26, 977–986 (1994)

    Article  Google Scholar 

  3. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, New York, 2003)

    Google Scholar 

  4. P. Dong, W. Qian, S. Liao, H. Liang, C.-.C. Kung, N.-.N. Feng, R. Shafiiha, J. Fong, D. Feng, A.V. Krishnamoorthy, M. Asghari, Opt. Express 18, 14474–14479 (2010)

    Article  ADS  Google Scholar 

  5. M. Heiblum, IEEE J. Quantum Electron. QE-11, 75–83 (1975)

    Google Scholar 

  6. D.M. Shyroki, IEEE Trans. Microwave Theory Tech. 56, 414–419 (2008)

    Article  ADS  Google Scholar 

  7. A. Yariv, Electron. Lett. 4, 321–322 (2000)

    Article  Google Scholar 

  8. W.R. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J.H. Schmidt, S. Janz, Opt. Express 17, 18971–18982 (2009)

    Article  ADS  Google Scholar 

  9. Y. Painchaud, M. Poulin, C. Latrasse, M.-J. Picard, Bragg grating based Fabry-Perot filters for characterizing silicon-on-insulator waveguides. Paper presented at the IEEE 9th international conference on group IV photonics (GFP), San Diego, California, USA, 29–31 Aug. (2012)

  10. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, Hoboken, New Jersey 2003), Chap. 11

  11. P. Yeh, Optical Waves in Layered Media (Wiley, Hoboken, New Jersey 2005), Chap. 6

  12. H.-C. Kim, K. Ikeda, Y. Fainman, J. Lightw. Technol. 25, 1147–1151 (2007)

    Article  ADS  Google Scholar 

  13. J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Sausalito, California 1997)

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF), the NSF Engineering Research Center for Integrated Access Networks, Defense Advanced Research Projects Agency, and the Cymer Corporation. The authors would like to thank the Nano3 staff at UCSD for support during sample fabrication, and C. Hennessey for logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Grieco.

Appendix: Derivations

Appendix: Derivations

1.1 Coefficients of transmission and reflection of a DBR

We shall take as our starting point Eqs. (1, 3) of the paper. To uncouple the equations, first differentiate them:

$$\frac{{{\text{d}}^{2} A_{F} }}{{{\text{d}}z^{2} }} = - i \cdot \kappa \cdot \frac{{{\text{d}}A_{B} }}{{{\text{d}}z}}\exp \left( {i \cdot \Updelta \beta \cdot z} \right) + \kappa \cdot \Updelta \beta \cdot A_{B} \exp \left( {i \cdot \Updelta \beta \cdot z} \right) - \frac{{\alpha_{\text{DBR}} }}{2}\frac{{{\text{d}}A_{F} }}{{{\text{d}}z}} $$
(23)
$$\frac{{{\text{d}}^{2} A_{B} }}{{{\text{d}}z^{2} }} = i \cdot \kappa^{ * } \cdot \frac{{{\text{d}}A_{F} }}{{{\text{d}}z}}\exp \left( { - i \cdot \Updelta \beta \cdot z} \right) + \kappa^{ * } \cdot \Updelta \beta \cdot A_{F} \exp \left( { - i \cdot \Updelta \beta \cdot z} \right) + \frac{{\alpha_{\text{DBR}} }}{2}\frac{{{\text{d}}A_{B} }}{{{\text{d}}z}} $$
(24)

Complete the decoupling by substitution from Eqs. (1, 3) in order to obtain separate differential equations for the forward and backward propagating field amplitudes:

$$\frac{{{\text{d}}^{2} A_{F} }}{{{\text{d}}z^{2} }} = \left( {\kappa^{ * } \kappa + i \cdot \Updelta \beta \frac{{\alpha_{\text{DBR}} }}{2} + \frac{{\alpha_{\text{DBR}}^{2} }}{4}} \right)A_{F} + i \cdot \Updelta \beta \frac{{{\text{d}}A_{F} }}{{{\text{d}}z}} $$
(25)
$$\frac{{{\text{d}}^{2} A_{B} }}{{{\text{d}}z^{2} }} = \left( {\kappa^{ * } \kappa + i \cdot \Updelta \beta \frac{{\alpha_{\text{DBR}} }}{2} + \frac{{\alpha_{\text{DBR}}^{2} }}{4}} \right)A_{B} - i \cdot \Updelta \beta \frac{{{\text{d}}A_{B} }}{{{\text{d}}z}} $$
(26)

The general solution of Eqs. (25, 26) is Eqs. (46) of the paper.

The boundary conditions that we will apply to determine the undetermined coefficients C 1, C 2, D 1, and D 2 in Eqs. (46) are A B (L DBR) = 0 and A F (0) = a nonzero constant. This corresponds to the physical arrangement in which only a forward propagating field is incident upon the DBR. It is possible to eliminate two of the coefficients by substituting the boundary conditions into Eqs. (4, 5). The general solutions may then be rewritten as:

$$A_{F} = 2 \cdot C_{1} \cdot \exp \left( {\frac{i \cdot \Updelta \beta \cdot z}{2}} \right)\sinh \left( {s \cdot z} \right) + A_{F} \left( 0 \right) \cdot \exp \left( {\frac{i \cdot \Updelta \beta \cdot z}{2}} \right)\exp \left( { - s \cdot z} \right) $$
(27)
$$A_{B} = 2 \cdot D_{1} \cdot \exp \left( {s \cdot L_{\text{DBR}} } \right) \cdot \exp \left( {\frac{ - i \cdot \Updelta \beta \cdot z}{2}} \right)\sinh \left[ {s\left( {z - L_{\text{DBR}} } \right)} \right]. $$
(28)

Substituting Eqs. (27, 28) into Eqs. (1, 2) and again employing the boundary conditions, the remaining coefficients may be determined:

$$C_{1} = \frac{{\left( {s - \frac{{i \cdot \Updelta \beta + \alpha_{\text{DBR}} }}{2}} \right)A_{F} \left( 0 \right)\exp \left( { - s \cdot L_{\text{DBR}} } \right)}}{{\left( {i \cdot \Updelta \beta + \alpha_{\text{DBR}} } \right)\sinh \left( {s \cdot L_{\text{DBR}} } \right) + 2 \cdot s \cdot \cosh \left( {s \cdot L_{\text{DBR}} } \right)}} $$
(29)
$$D_{1} = \frac{{ - i \cdot \kappa^{ * } \cdot A_{1} \left( 0 \right) \cdot \exp \left( { - s \cdot L_{\text{DBR}} } \right)}}{{\left( {i \cdot \Updelta \beta + \alpha_{\text{DBR}} } \right)\sinh \left( { - s \cdot L_{\text{DBR}} } \right) - 2 \cdot s \cdot \cosh \left( { - s \cdot L_{\text{DBR}} } \right)}}. $$
(30)

The coefficients of reflection and transmission may be determined by substituting Eqs. (29, 30) into Eqs. (27, 28):

$$r_{F} = \frac{{A_{B} \left( 0 \right)}}{{A_{F} \left( 0 \right)}} = \frac{{ - i \cdot 2 \cdot \kappa^{ * } \cdot \sinh \left( { - s \cdot L_{\text{DBR}} } \right)}}{{\left( {i \cdot \Updelta \beta + \alpha_{\text{DBR}} } \right)\sinh \left( { - s \cdot L_{\text{DBR}} } \right) - 2 \cdot s \cdot \cosh \left( { - s \cdot L_{\text{DBR}} } \right)}} $$
(31)
$$t_{F} = \frac{{A_{F} \left( L \right)}}{{A_{F} \left( 0 \right)}} = \frac{{2 \cdot s \cdot \exp \left( {i\frac{\Updelta \beta }{2} \cdot L_{\text{DBR}} } \right)}}{{\left( {i \cdot \Updelta \beta + \alpha_{\text{DBR}} } \right)\sinh \left( {s \cdot L_{\text{DBR}} } \right) + 2 \cdot s \cdot \cosh \left( {s \cdot L_{\text{DBR}} } \right)}} $$
(32)

where r F is the coefficient of reflection and t F is the coefficient of transmission. It is trivial to manipulate Eqs. (31, 32) into Eqs. (7, 8).

1.2 First-order approximation of null point coefficient of reflection

To arrive at the null point reflectance to first order in α DBR, begin by considering the parameter s described by Eq. (6) at the null point Δβ null described by Eq. (10). Neglecting the term that is second order in α DBR, the product s·L DBR at such a point becomes:

$$s \cdot L_{\text{DBR}} \approx \sqrt { - \left( {n \cdot \pi } \right)^{2} + i \cdot \Updelta \beta_{\text{null}} \frac{{\alpha_{\text{DBR}} }}{2} \cdot L_{\text{DBR}}^{2} } . $$
(33)

Next, take the Taylor series of the radical in Eq. (33) and keep the terms to first order in α DBR:

$$s \cdot L_{\text{DBR}} \approx n \cdot i\pi \left( {1 - \frac{{i \cdot \Updelta \beta_{\text{null}} \cdot \alpha_{\text{DBR}} \cdot L_{\text{DBR}}^{2} }}{{4\left( {n \cdot \pi } \right)^{2} }}} \right) = n \cdot i\pi + \frac{{\Updelta \beta_{\text{null}} \cdot \alpha_{\text{DBR}} \cdot L_{\text{DBR}}^{2} }}{4 \cdot n \cdot \pi }. $$
(34)

Next use the approximation in Eq. (34) to simplify the term in the denominator of coefficient of reflectance Eq. (7) containing the hyperbolic tangent:

$$\frac{{s \cdot L_{\text{DBR}} }}{{\tanh \left( {s \cdot L_{\text{DBR}} } \right)}} \approx \frac{n \cdot i\pi }{{\tanh \left( {n \cdot i\pi + \frac{{\Updelta \beta_{\text{null}} \cdot \alpha_{\text{DBR}} \cdot L_{\text{DBR}}^{2} }}{4 \cdot n \cdot \pi }} \right)}}. $$
(35)

Taking the hyperbolic tangent to first order and substituting in Eq. (10), Eq. (35) becomes:

$$\frac{{s \cdot L_{\text{DBR}} }}{{\tanh \left( {s \cdot L_{\text{DBR}} } \right)}} \approx \frac{n \cdot i\pi }{{\frac{{\Updelta \beta_{\text{null}} \cdot \alpha_{\text{DBR}} \cdot L_{\text{DBR}}^{2} }}{4 \cdot n \cdot \pi }}} = \frac{{ \pm 2 \cdot i \cdot n^{2} \cdot \pi^{2} }}{{\alpha_{\text{DBR}} \cdot L_{\text{DBR}} \sqrt {\kappa^{ * } \kappa \cdot L_{\text{DBR}}^{2} + \left( {n \cdot \pi } \right)^{2} } }}. $$
(36)

Substituting Eqs. (36) and (10) into Eq. (6) and keeping only terms of the first order in α DBR results in the expression for reflectance:

$$r_{F} = \frac{{ \mp \left( {\alpha_{\text{DBR}} \cdot L_{\text{DBR}} } \right)\left( {\kappa^{ * } \cdot L_{\text{DBR}} } \right)\sqrt {\kappa^{ * } \kappa \cdot L_{\text{DBR}}^{2} + \left( {n \cdot \pi } \right)^{2} } }}{{2 \cdot n^{2} \cdot \pi^{2} }}. $$
(37)

It is trivial to verify that taking the magnitude of Eq. (37) results in Eq. (11).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grieco, A., Slutsky, B. & Fainman, Y. Characterization of waveguide loss using distributed Bragg reflectors. Appl. Phys. B 114, 467–474 (2014). https://doi.org/10.1007/s00340-013-5543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5543-x

Keywords

Navigation