Skip to main content
Log in

Spatial mode cleaning in radically asymmetric strongly focused laser beams

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate that a femtosecond laser pulse strongly focused in air can produce a highly symmetric damage pattern on glass. This damage pattern contains a series of near-perfect radial rings, with diameters much larger than the predicted focal spot diameter. These rings disappear when the experiment is conducted in vacuum, indicating atmospheric involvement. Surprisingly, the shape and size of the rings seem to be nearly independent of the shape of the generating laser beam, showing dramatic spatial mode cleaning. A “half moon” initial laser mode created by obscuring one side of the round beam produces rings of similar quality to those obtained with the unclipped beam. While spatial mode cleaning has previously been reported in filaments, this is the most dramatic demonstration of the effect that we are aware of. We argue that the effect is due primarily to ionization, in contrast to studies in longer filaments that attribute it to self-focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  2. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  3. J. Kasparian, J.-P. Wolf, Opt. Exp. 16, 466 (2008)

    Article  ADS  Google Scholar 

  4. G. Fibich, S. Eisenmann, B. Ilan, A. Zigler, Opt. Lett. 29, 1772 (2004)

    Article  ADS  Google Scholar 

  5. J. Kasparian et al., Opt. Lett. 25, 1397 (2000)

    Article  ADS  Google Scholar 

  6. H.R. Lange et al., Opt. Lett. 23, 120 (1998)

    Article  ADS  Google Scholar 

  7. G. Méchain et al., Opt. Commun. 247, 171 (2005)

    Article  ADS  Google Scholar 

  8. B. Prade et al., Opt. Lett. 31, 2601 (2006)

    Article  ADS  Google Scholar 

  9. S.L. Chin, F. Théberge, W. Liu, Appl. Phys. B 86, 477 (2007)

    Article  ADS  Google Scholar 

  10. S. Skupin et al., Phys. Rev. E 70, 046602 (2004)

    Article  ADS  Google Scholar 

  11. R. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003) p. 311–324

  12. M. Rodriguez et al., Phys. Rev. E 69, 036607 (2004)

    Article  ADS  Google Scholar 

  13. K.D. Moll, A.L. Gaeta, G. Fibich, Phys. Rev. Lett. 90, 203902 (2003)

    Article  ADS  Google Scholar 

  14. S. Klimentov, P. Pivovarov, N. Fedorov, S. Guizard, F. Dausinger, V. Konov, Appl. Phys. B 105, 495 (2011)

    Article  ADS  Google Scholar 

  15. S.L. Chin et al., Opt. Commun. 188, 181 (2001)

    Article  ADS  Google Scholar 

  16. O.E. Martínez, IEEE J. Quant. Electron QE-23, 1385 (1987)

    Article  ADS  Google Scholar 

  17. E.B. Treacy, IEEE J. Quant. Electron 5, 454 (1969)

    Article  ADS  Google Scholar 

  18. H. Ward, L. Bergé, Phys. Rev. Lett. 90, 053901 (2003)

    Article  ADS  Google Scholar 

  19. D. Bäurle, Laser Processing and Chemistry, 4th edn. (Springer, Berlin, 2011)

  20. J. Bonse, J.M. Wrobel, K. –W. Brzezinka, N. Esser, and W. Kautek. Appl. Surf. Sci. 202, 272 (2002)

    Article  ADS  Google Scholar 

  21. A. Borowiec, H.F. Tiedje, H.K. Haugen, Appl. Surf. Sci. 243, 129 (2005)

    Article  ADS  Google Scholar 

  22. J. Bonse, A. Rosenfeld, C. Grbing, G. Steinmeyer, N. Mailman, G.A. Botton, H.K. Haugen, J. Appl. Phys. 106, 074907 (2009)

    Article  ADS  Google Scholar 

  23. T.Y. Hwang, C. Guo, J. Appl. Phys. 108, 073523 (2010)

    Article  ADS  Google Scholar 

  24. R. Rankin, C.E. Capjack, N.H. Burnett, P.B. Corkum, Opt. Lett. 16, 835 (1991)

    Article  ADS  Google Scholar 

  25. P. Monot, T. Auguste, L.A. Lompré, G. Mainfray, C. Manus, J. Opt. Soc. Am. B 9, 1579 (1992)

    Article  ADS  Google Scholar 

  26. A.E. Siegman, Lasers, [University Science Books (Sausalito, CA, 1986)

    Google Scholar 

  27. W.J. Smith, Modern Optical Engineering, 3rd edn (McGraw-Hill, New York, 2000)

  28. G.A. Mourou, T. Tajima, S. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  29. J.-F. Daigle et al., Appl. Phys. B 94, 249 (2009)

    Article  ADS  Google Scholar 

  30. R. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, J.-P. Wolf, Appl. Phys. Lett. 83, 213 (2003)

    Article  ADS  Google Scholar 

  31. W. Liu, J.-F. Gravel, F. Théberge, A. Becker, S.L. Chin, Appl. Phys. B 80, 857 (2005)

    Article  ADS  Google Scholar 

  32. M. Mlejnek, E.M. Wright, J.V. Moloney, Opt. Lett. 23, 382 (1998)

    Article  ADS  Google Scholar 

  33. B. Alonso, A. Zaïr, J. San Román, O. Varela, L. Roso, Opt. Exp. 18, 15467 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Air Force Office of Scientific Research and the National Science Foundation (NSF). We are grateful to Biophotonic Solutions Inc. for providing a demo FemtoJock system to measure our pulse parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heins, A.M., Guo, C. Spatial mode cleaning in radically asymmetric strongly focused laser beams. Appl. Phys. B 113, 317–325 (2013). https://doi.org/10.1007/s00340-013-5483-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5483-5

Keywords

Navigation