Skip to main content
Log in

Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a system for molecular spectroscopy using a broadband mid-infrared laser with near-infrared detection. Difference frequency generation of a Yb:fiber femtosecond laser produced a mid-infrared (MIR) source tunable from 2100–3700 cm−1 (2.7–4.7 µm) with average power up to 40 mW. The MIR spectrum was upconverted to near-infrared wavelengths for broadband detection using a two-dimensional dispersion imaging technique. Absorption measurements were performed over bandwidths of 240 cm−1 (7.2 THz) with 0.048 cm−1 (1.4 GHz) resolution, and absolute frequency scale uncertainty was better than 0.005 cm−1 (150 MHz). The minimum detectable absorption coefficient per spectral element was determined to be 4.4×10−7 cm−1 from measurements in low pressure CH4, leading to a projected detection limit of 2 parts-per-billion of methane in pure nitrogen. In a natural atmospheric sample, the methane detection limit was found to be 30 parts-per-billion. The spectral range, resolution, and frequency accuracy of this system show promise for determination of trace concentrations in gas mixtures containing both narrow and broad overlapping spectral features, and we demonstrate this in measurements of air and solvent samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Richter, A. Fried, P. Weibring, Laser Photonics Rev. 3, 343 (2009)

    Article  Google Scholar 

  2. C. Bauer, A.K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, G. Holl, Appl. Phys. B 92, 327 (2008)

    Article  ADS  Google Scholar 

  3. M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)

    Article  ADS  Google Scholar 

  4. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, New J. Phys. 8, 262 (2006)

    Article  ADS  Google Scholar 

  5. F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye, Opt. Lett. 34, 1330 (2009)

    Article  ADS  Google Scholar 

  6. N. Leindecker, A. Marandi, R.L. Byer, K.L. Vodopyanov, Opt. Express 19, 6296 (2011)

    Article  Google Scholar 

  7. E. Sorokin, I.T. Sorokina, J. Mandon, G. Guelachvili, N. Picqué, Opt. Express 15, 16540 (2007)

    Article  ADS  Google Scholar 

  8. F. Adler, P. Maslowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Opt. Express 18, 21861 (2010)

    Article  ADS  Google Scholar 

  9. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  10. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I.T. Sorokina, N. Picqué, T.W. Hänsch, Appl. Phys. B, Lasers Opt. 100, 3 (2010)

    Article  ADS  Google Scholar 

  11. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Nat. Photonics 4, 55 (2010)

    Article  ADS  Google Scholar 

  12. C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch, Phys. Rev. Lett. 99, 263902 (2007)

    Article  ADS  Google Scholar 

  13. S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)

    Article  Google Scholar 

  14. K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye, Appl. Phys. B 100, 917 (2010)

    Article  ADS  Google Scholar 

  15. T. Gherman, S. Kassi, A. Campargue, D. Romanini, Chem. Phys. Lett. 383, 353 (2004)

    Article  ADS  Google Scholar 

  16. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006)

    Article  ADS  Google Scholar 

  17. T. Neely, T.A. Johnson, S.A. Diddams, Opt. Lett. (2011, to appear). arXiv:1109.2624

  18. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, U. Keller, Opt. Lett. 32, 1138 (2007)

    Article  ADS  Google Scholar 

  19. A. Gambetta, R. Ramponi, M. Marangoni, Opt. Lett. 33, 2671 (2008)

    Article  ADS  Google Scholar 

  20. D.G. Winters, P. Schlup, R.A. Bartels, Opt. Lett. 35, 2179 (2010)

    Article  ADS  Google Scholar 

  21. M. Shirasaki, Opt. Lett. 21, 366 (1996)

    Article  ADS  Google Scholar 

  22. S.J. Xiao, A.M. Weiner, Opt. Express 12, 2895 (2004)

    Article  ADS  Google Scholar 

  23. E.J. Heilweil, Opt. Lett. 14, 551 (1989)

    Article  ADS  Google Scholar 

  24. K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, D.M. Jonas, Opt. Lett. 30, 1228 (2005)

    Article  ADS  Google Scholar 

  25. S. Xiao, A.M. Weiner, C. Lin, IEEE J. Quantum Electron. 40, 420 (2004)

    Article  ADS  Google Scholar 

  26. A. Bartels, D. Heinecke, S.A. Diddams, Opt. Lett. 33, 1905 (2008)

    Article  ADS  Google Scholar 

  27. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.E. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C. P Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  28. A. Hubaux, G. Vos, Anal. Chem. 42, 849 (1970)

    Article  Google Scholar 

  29. T.M. Lovestead, T.J. Bruno, Anal. Chem. 82, 5621 (2010)

    Article  Google Scholar 

  30. P.M. Chu, F.R. Guenther, G.C. Rhoderick, W.J. Lafferty, J. Res. Natl. Inst. Stand. Technol. 104, 59 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, T.A., Diddams, S.A. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B 107, 31–39 (2012). https://doi.org/10.1007/s00340-011-4748-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4748-0

Keywords

Navigation