Skip to main content
Log in

Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Superlens, which is proposed to realize sub-diffraction-limited optical imaging, has been experimentally verified (N. Fang et al., Science 308, 534 (2005), D. Melville and R.J. Blaikie, Opt. Express 13, 2127 (2005)). Based on the basic experimental configuration, here we propose a metal-cladding structure developed to effectively localize the surface plasmons for projecting deep-subwavelength patterns. We give a numerical analysis on the structure and show that proper choices of incident wavelength can realize either deep-subwavelength interference patterning or high-quality optical imaging. The study presented here is believed to provide an approach for developing high-resolution optical lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988), Chap. 2, pp. 4–7

    Google Scholar 

  2. J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  3. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308, 534 (2005)

    Google Scholar 

  4. D. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127 (2005)

    Article  ADS  Google Scholar 

  5. R.J. Blaikie, M.M. Alkaisi, S.J. McNab, D.O.S. Melville, Nanoscale optical patterning using evanescent fields and surface plasmons. Int. J. Nanosci. 3, 405–417 (2004)

    Article  Google Scholar 

  6. M.J. Weber, Handbook of Optical Materials (CRC, Boston, 2003)

  7. F. Villa, T. Lopez Rios, L.E. Regalado, Electromagnetic modes in metal-insulator-metal structures. Phys. Rev. B 63, 165103 (2001)

    Article  ADS  Google Scholar 

  8. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization. Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  9. M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981)

    Article  ADS  Google Scholar 

  10. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780 (2004)

    Article  ADS  Google Scholar 

  11. Z. Liu, Q. Wei, X. Zhang, Surface plasmon interference nanolithography. Nano Lett. 5, 957 (2005)

    Article  ADS  Google Scholar 

  12. M. Derouard, J. Hazart, G. Lerondel, R. Bachelot, P. Adam, P. Royer, Polarization-sensitive printing of surface plasmon interferences. Opt. Express 15, 4238 (2007)

    Article  ADS  Google Scholar 

  13. T. Xu, Y.H. Zhao, J.X. Ma, C.T. Wang, J.H. Cui, C.L. Du, X.G. Luo, Sub-diffraction-limited interference photolithography with metamaterials. Opt. Express 18, 13579 (2008)

    Article  Google Scholar 

  14. Y. Xiong, Z. Liu, X. Zhang, Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl. Phys. Lett. 93, 111116 (2008)

    Article  ADS  Google Scholar 

  15. M.D. Arnold, R.J. Blaikie, Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. Opt. Express 15, 11542 (2007)

    Article  ADS  Google Scholar 

  16. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007)

    Article  ADS  Google Scholar 

  17. S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J. Appl. Phys. 101, 104309 (2007)

    Article  ADS  Google Scholar 

  18. A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J. van de Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92, 031504 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Fang, L., Ma, J. et al. Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009). https://doi.org/10.1007/s00340-009-3615-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3615-8

PACS

Navigation